

MISSISSIPPI DEPARTMENT OF EDUCATION

Ensuring a bright future for every child

2017 Entrepreneurship

Program CIP: 52.0701

Direct inquiries to

Instructional Design Specialist	Pregram Coordinator
Researeh and Curriculum Unit	Office of Career and Technical Education
P.O. Drawer DX	Mississippi Department of Education
Mississippi State, MS 39762	P.O. Box 771
662.325 .2510	Jackson, MS 39205
	601.359 .3461

Published by

Office of Career and Technical Education
Mississippi Department of Education
Jackson, MS 39205

Research and Curriculum Unit
Mississippi State University
Mississippi State, MS 39762

The Research and Curriculum Unit (RCU), located in Starkville, MS, as part of Mississippi State University, was established to foster educational enhancements and innovations. In keeping with the land grant mission of Mississippi State University, the RCU is dedicated to improving the quality of life for Mississippians. The RCU enhances intellectual and professional development of Mississippi students and educators while applying knowledge and educational research to the lives of the people of the state. The RCU works within the contexts of curriculum development and revision, research, assessment, professional development, and industrial training.

Table of Contents

Standards 5
Preface. 6
Mississippi Teacher Professional Resources 7
Executive Summary 8
Course Outline 9
Research Synopsis 10
Professional Organizations 13
Using This Document. 14
Unit 1: Ideas that Create Value. 15
Unit 2: Customer Validation: Do People Really Care? 16
Unit 3: Creating Winning Products. 17
Unit 4: Entrepreneurial Finance. 18
Unit 5: Marketing Strategy 20
Unit 6: Sales and Distribution Channels 21
Unit 7: Don't Break the Rules that Matter 22
Unit 8: Planning for Growth. 23
Student Competency Profile 25
Appendix A: Unit References 27
Appendix B: Industry Standards 29
Appendix C: 21st Century Skills 31
Appendix D: College and Career Ready Standards 34
Appendix E: International Society for Technology in Education Standards (ISTE) 73

MISSISSIPPI

Acknowledgments

The Entrepreneurship curriculum was presented to the Mississippi Board of Education on February 16, 2017. The following persons were serving on the state board at the time:

Dr. Carey M. Wright, State Superintendent of Education
Mrs. Rosemary G. Aultman, Chair
Dr. Jason S. Dean, Vice-Chair
Mr. Buddy Bailey
Mrs. Kami Bumgarner
Dr. Karen Elam
Mr. Jehnny Franklin
Mr. William Harold Jones
Dr. John R. Kelly
Mr. Charles McClelland

Jean Massey, Associate Superintendent of Education for the Office of Career and Technical Education at the Mississippi Department of Education, supported the RCU and the teachers throughout the development of the curriculum framework and supporting materials.

Denise Sibley, Instructional Design Specialist for the Research and Curriculum Unit at Mississippi State University researched and authored this framework. denise.sibley@reu.msstate.edu.

Also, special thanks are extended to the professionals who contributed teaching and assessment materials that are included in the framework and supporting materials:

Tasha Bibb, Entrepreneurial Development Manager, Innovate Mississippi, Jackson, MS
Tammie Brewer, Mississippi DECA and Collegiate DECA Advisor, Office of Student Organizations, Mississippi Department of Education

Michael Harris, Entrepreneur Center, Mississippi Development Authority, Jackson, MS
Dré Helms, Business \& Technology Instructor, Talon Entrepreneurhip and Management (TEAM) Academy Instructor, Florence High School, Florence, Mississippi

Eric Hill, Director, Center for Entrepreneurship \& Outreach, Mississippi State University
Danny Holt, Associate Professor of Management, Department of Management \& Information Systems, Mississippi State University

Inlie Ingram, NBCT, Technology Foundations Instructor, Florence Middle School, Florence, Mississippi

Tim Mask, Vice President/Brand Planning and Development, Maris, West and Baker, Jackson, MS

James Wilcox, Director, Center for Economic and Entrepreneurship Education, The University of Southern Mississippi, Hattiesburg, MS

Appreciation is expressed to the following professional, who provided guidance and insight throughout the development process:

Angela Kitehens, Program Coordinator Business Programs, Office of Career and Technical Education and Workforce Development, Mississippi Department of Education, Jackson, MS

Michele Taylor, Online Learning Manager for the Research and Curriculum Unit at Mississippi State University

Betsey Smith, Associate Director for the Research and Curriculum Unit at Mississippi State University

Scett Kolle, Project Manager for the Research and Curriculum Unit at Mississippi State University

Jolanda Young, Educational Technologist for the Research and Currieulum Unit at Mississippi State University

Standards

Standards are superscripted in each unit and are referenced in the appendices. Standards in the Entrepreneurship Curriculum Framework and Supporting Materials are based on the following:

The National Content Standards for Entrepreneurship Education

Copyright© 2004 by the Consortium for Entrepreneurship Education, Columbus, Ohio, (www.entre-ed.org). Copyright information can be found at http://www.entreed.org/Standards_Toolkit.

College and Career-Ready Standards

The College and Career-Ready Standards emphasize critical thinking, teamwork and problem solving skills. Students will learn the skills and abilities demanded by the workforce of today and the future. Mississippi adopted Mississippi College and Career Ready Standards (MCCRS) because they provide a consistent, clear understanding of what students are expected to learn so that teachers and parents know what they need to do to help them. Reprinted from http://www.mde.k12.ms.us/MCCRS

International Society for Technology in Education Standards (ISTE) Reprinted with permission from National Educational Technology Standards for Students: Connecting Curriculum and Technology, Copyright 2007, International Society for Technology in Education (ISTE), 800.336.5191 (U.S. and Canada) or 541.302.3777 (International), iste@iste.org, www.iste.org. All rights reserved. Permission does not constitute an endorsement by ISTE.

21st Century Skills and Information and Communication Technologies Literacy Standards

In defining $21^{\text {st }}$-century learning, the Partnership for 21 st Century Skills has embraced five content and skill areas that represent the essential knowledge for the 21st century: global awareness; civic engagement; financial, economic, and business literacy; learning skills that encompass problem solving, critieal thinking, and self directional skills; and information and commenication technology (ICT) literacy.

Preface

Secondary career and technical education programs in Mississippi face many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through increased requirements for mastery and attainment of competency as documented through both formative and summative assessments.

The courses in this document reflect the statutory requirements as found in Section 37-3-49, Mississippi Code of 1972, as amended (Section 37-46). In addition, this eurriculum reflects gridelines imposed by federal and state mandates (Laws, 1988, Ch. 487, §14; Laws, 1991, Ch. 423, §1; Laws, 1992, Ch. 519, §4 eff. from and after July 1, 1992; Carl D. Perkins Vocational Education Act IV, 2007; and Every Student Succeeds Act 2015.).

Mississippi Teacher Professional Resources

The following are resources for Mississippi teachers.
Curriculum, Assessment, Professional Learning, and other program resources can be found at The Research and Curriculum Unit's website: http://www.reu.msstate.edu

Learning Management System: An online resource
Learning Management System information can be found at the RCU's website, under Professional Learning.

Should you need additional instruetions, please call 662.325.2510.

Executive Summary

Course Description

Entrepreneurship introduces students to the basic business knowledge and skills, along with the individual traits and behaviors associated with the successful entrepreneur. Student will assess their personal strengths, apply asset mapping and opporttnity recognition processes, and develop communication, critical thinking, problem solving, and leadership skills. Emphasis is placed on project based and work based learning strategies.

Student Prerequisites

In order for students to be able to experience success in the program, the following student prerequisites are suggested:

1. Cor higher in English (the previous year)
2. C or higher in Math (last course taken or the instructor can specify the math)
3. Instructor Approval and TABE Reading Score (eighth grade or higher)
or
4. TABE Reading Score (eighth grade or higher)
5. Instructor Approval
or
6. Instructor Approval

Applied Academic Credit

The latest academic credit information can be found at
http://www.mde.k12.ms.us/ACCRED/AAS-
Once there, click the "Mississippi Public School Accountability Standards Year" tab.
Review the appendices for graduation options and superseript information regarding specific programs receiving academic credit.
Check this site often as it is updated frequently.

Teacher Licensure

The latest teacher licensure information can be found at http://www.mde.k12.ms.us/educator licensure

Professional Learning

If you have specific questions about the content of any of training sessions provided, please eontact the Research and Currieulum Unit at 662.325.2510

Course Outline

Entrepreneurship (One Carnegie Unit) - Course Code: 990003

Unit Number	\quad Unit Name	Hours
4	Ideas that Create Value	20
z	Customer Validation: Do People Really Care?	20
3	Creating Winning Products	20
4	Entrepreneurial Finance	15
5	Marketing Strategy	15
6	Sales and Distribution Channels	15
7	Don't Break the Rules that Matter	15
8	Planning for Growth	20
Total		140

Research Synopsis

Introduction

Entrepreneurial Education

The success, or "survival", of new businesses fluctuates from year to year and, although traits such as greater risk tolerance and innovativeness significantly contribute to entrepreneurial success; exposure to entrepreneurship in one's adolescence is also an important factor (Guiso, Pistaferri, and Schivardi, 2015). Entrepreneurship education provides this exposure and builds leadership, adaptability, creativity, perseverance, and financial literacy-skill sets not only needed for entrepreneurs, but for all individuats to streceed in the workforee (Studdard, Dawson, Button, Jackson, Quisenberry, \& Belleve, 2016). Providing experiential learning opportunities for students is vital to the success of entrepreneurship edueation (Ruskovarara \& Pihkala, 2015; Seott \& Thompson, 2016) and building partnerships between eduational institutions and businesses is critical to providing these opportunities (Ruskovaara \& Pihkala, 2015). Entrepreneurship students who have had the opportunity to interact with professionals reported having more confidence and believed that starting a business was attainable (Bell, R. \& Bell, H., 2016). Entrepreneurship education has also been found to improve student performance beeause students are more engaged in the learning process (Solomon \& May, 2014).

Needs of the Future Workforce

Small businesses make a significant contribution to the overall number of businesses and jobs in the U.S., therefore entrepreneurship plays a vital role in the growth of the U.S. econemy (Bureat of Labor Statistics, 2016). Most of the businesses in Mississippi are small, privately owned businesses which employ nearly half of the workforee in the state (see Figure 1) (U.S. Small Business Association, 2015). Mississippi ranks $10^{\text {th }}$-among smaller states in growth of new entrepreneurial businesses and $11^{\text {th }}$ in new business creation activity and people engaging in business startups (Morelix, Fairlie, Reedy \& Russell, 2016).

Figure 1: Mississippi Employment by Firm Size

MISSISSIPPI
DEPARTMENTOF EDUCATION

Perkins IV Requirements

The Entrepreneurship curriculum meets the Perkins IV requirement of ensuring that career and technical programs strengthen the focus on responsiveness to the economy and are up-to-date with the needs of business and industry. This course also develops high-demand skills within the context of foreign trade; international economics; and diverse political, cultural and legal systems. International Business can be included as part of a sequence of courses for most Career and Technieal Education (CTE) programs because it provides students with challenging academic standards and relevant technical knowledge and skills they need to prepare for further education and careers in current or emerging professions in the global environment.

Curriculum Content

Stummary of Standards
The standards to be included in the Entrepreneurship curriculum are the College and Career Readiness standards for English langtage arts and mathematies, 21st-century skills, the National Educational Technology Standards (NETS) for Students, and the National Content Standards for Entrepreneurship Education. Combining these standards to create this document will result in highly skilled, well rounded students who are prepared to enter a secondary academic or career and technical program of study. They will also be prepared to academically compete nationally as the College and Career Readiness standards are designed to prep students for success in eollege and careers.

Academic Infusion

Competencies and suggested objectives in the Entrepreneurship curriculum were developed with the College and Career Readiness standards in mind. Skills associated with the language arts are enhanced through research and presentation projects. Most units in the curriculum provide a mathematics component, as it requires several calculations and critical thinking. Additionally, analyzing economic data gives students experience interpreting statistics and problem solving. The College and Career Readiness standards Crosswalk for Entrepreneurship in Appendix D shows the alignment of the College and Career Readiness standards to each unit.

Transition to Postsecondary Education

The latest articulation information for Secondary to Postsecondary can be found at the Mississippi Commtnity College Board (MCCB) website http://www.meeb.edut

Best Practices

Innovative Instructional Technologies
The Entrepreneurship curriculum provides ample opportunities for students to conduct research using resources available on the Internet and using application software to analyze data, write reports, and present information. To make use of the latest online communication tools, such as wikis, blogs, and podeasts, the classroom teacher is encouraged to use a learning -management system that introduces students to education in an online envirenment and places the responsibility of learning on the student.

Differentiated Instruction

Students learn in a variety of ways. Some are visual learners, needing only to read information and study it to succeed. Others are auditory learners, thriving best when information is read aloud to them. Still others are tactile learners, needing to participate actively in their learning experiences. Add the student's background, emotional health, and circumstances, and a very unique learner emerges. To address this, instructional design methods that lead students to a deeper understanding of course material and provide multiple opportunities for students to streceed in different ways. By providing various teaching and assessment strategies, students with various learning styles can suceeed.

Conclusion

All students benefit from developing an appreciation for and understanding of entrepreneurship before leaving high school. The skill sets they learn will better prepare them to succeed in college and in the workplace. Entrepreneurship education is an opportunity for students to interact with professionals and work on projects, students are more engaged in the learning process which improves their performance. Entrepreneurial activity is on the rise in Mississippi students with entrepreneurial skills will be better prepared for success.

Professional Organizations

DECA
Mississippi:
359 North West Street
P.O. Box 771
Jackson, MS 39205
Phone: 601.576.5010
Fax: 601.354.7788
National:
1908 Association Drive
Reston, VA 20191
Phene: 703. 860.5000
infodeca.org
http://www.deca.orgt
Future Business Leaders of America (FBLA)
Mississippi:
P.O. Box 771
Jackson, MS 39205-0771
Phone: 601.576.5014
Fax: 601.354.7788
National:
1912 Association Drive
Reston, VA 20191-1591
Phone: 703.860.3334
http://www.fbla-pbl.orgt

Using This Document

Suggested Time on Task

This section indicates an estimated number of clock hours of instruction that should be required to teach the competencies and objectives of the unit. A minimum of 140 hours of instruction is required for each Carnegie unit credit. The curriculum framework should account for approximately $75-80 \%$ of the time in the course.

Competencies and Suggested Objectives

A competency represents a general concept or performance that students are expected to master as a requirement for satisfactorily completing a unit. Students will be expected to receive instruction on all competencies. The suggested objectives represent the enabling and supporting knowledge and performances that will indieate mastery of the competency at the course level.

Integrated Academic Topies, 21st Century Skills and Information and Communication Technology Literacy Standards, ACT College Readiness Standards, and Technology Standards for Students
 This section identifies related academic topies as required in the Subject Area Testing Program (SATP) in Algebra I, Biology I, English II, and U.S. History from 1877, which are integrated into the content of the unit. Research based teaching strategies also incorporate ACT College Readiness standards. This section also identifies the 21st Century Skills and Information and Communication Technology Literacy skills. In addition, national technology standards for students associated with the competencies and suggested objectives for the unit are alse identified.

Unit 1: Ideas that Create Value

Unit 2: Customer Validation: Do People Really Care?

1. Define startup and introduce concept of hypothesizing, experimenting, and iteration as it relates to a business model. a. Define startup a temporary business searching for a business model. Startups hope to become companies that execute.) b. Learn how to think about business ideas as assumptions on a customer and things he/she values.
2. Introduce the Business Model Canvas tool. ${ }^{\text {D0K3, CEE1, CEE2, CEE3, CEE5, CEE6, CEE7, CEE9, CEE11, }}$ CEE12, CEE13, CEE15 a. Define all 9 blocks of the canvas. i. Emphasize Value Propositions as "Pains, Gains, Task Drivers" b. Draw linkages between core components of Problem-Value Proposition-Customer e. Differentiate between value propositions and product features d. Differentiate between multiple types of 6 customer archetypes: ii. End User, Decision Maker, Buyer, Influencer, Recommender, Saboteur e. Reinforce that the Business Model Canvas is a tool to display and organize business hypothesizes. We don't know anything is fact until validated by customer feedback.
3. Develop oral and written communication skills and how to engage potential customers. DOK3, CEE1, CEE2, CEE3, CEE4, CEE5, CEE6, CEE7, CEE8, CEE9, CEE11, CEE13, CEE15 a. Explore methods of how to test a hypothesized value proposition. b. Understand how to test value propositions with customers without telling them about the idea.

MISSISSIPPI
DEPARTMENT OF
EDUCATION

Unit 3: Creating Winning Products

Unit 4: Entrepreneurial Finance

b. Understand the difference between owning a business and participating in a hobby.
e. Show an understanding of instrance, why instrance is needed, and the different types of instrance.
d. Understand how to perform management operations using math formulas including percent of purchases, interest charges and income tax rates.
e. Understand how to calculate simple interest, rounding numbers and propertional reasoning, meastrement, and reasoning.

Unit 5: Marketing Strategy

Competencies and Suggested Objectives 1. Explore powerful brands and feelings it elicits. a. Reflect and list brands that are recognizable both good and bad b. Identify what drives these feelings. e. Discuss how brands developed their product to elicit those feelings. 2. Identify the elements of marketing (for example product, place, price, promotion). ${ }^{\text {DOK2, }}$ DOK3, CEE1, CEE2, CEE3, CEE4, CEE5, CEE4, CEE5, CEE6, CEE7, CEE9, CEE11, CEE12, CEE13, CEE15 a. Diseuss the features and benefits of various products/services b. Determine the various factors to consider in choosing the location of a business. e. Diseuss fundamental prieing strategies d. Use the break even point to evaluate pricing strategies. e. Understand the types of promotion and appropriate promotional strategies. f. Discuss the difference between branding and marketing 3. Understand the concepts, processes, and systems needed to determine and satisfy eustomer needs/wants/expectations, meet business goals/objectives, and create new product/service ideas. ${ }^{\text {DOK3 }}$, CEE1, CEE2, CEE3, CEE4, CEE5, CEE4, CEE5, CEE6, CEE7, CEEY, CEE11, CEE12, CEE13, CeE15 a. Understand customer needs and the process of market segmentation. b. Research reaching, keeping, and increasing the market share. e. Identify the types of competitive advantages for a business to include cost leadership and differentiation d. Identify and analyze competition in terms of differentiation of products and services (competitive analysis). e. Identify sources for primary and secondary marketing researeh

Unit 6: Sales and Distribution Channels

```
Competencies and Suggested Objectives
1. Examine selling as a function of marketing. DOK3, CEE1, CEE2, CEE3, CEE4, CEE5, CEEA, CEE5, CEE6,
    CEE7, CEEY, CEE11, CEE12, CEE13,CEE15
    a. Differentiate between selling and marketing (Sales channels, Distribution channels)
    b. Explore steps of the sales process
    e. Understand the importance of customer relation management and its effect on
        marketing and sales.
    d. Evaluate the components of and understand the process of estimating customer
        acquisition cost.
2. Differentiate between various types of distribution channels and strategy. \({ }^{\text {DOK3, CEE1, CEE2, }}\)
    CEE3, CEE4, CEE5, CEE4, CEE5, CEE6, CEE7, CEE9, CEE11, CEE12, CEE13, CEE15
    a. Explore examples where channel strategy can create market competitive advantage
        i. Netflix vs. Blockbuster (same/similar value proposition)
        ii. Amazon vs. Walmart/retail
```


Unit 7: Don't Break the Rules that Matter

```
Competencies and Suggested Objectives
1. Explore various legal entities. 'DOK3, CEE1, CEE2, CEE3, CEE5, CEE6, CEE7, CEE9, CEE11, CEE12, CEE13, CEE15
    a. Diseuss non incorporated types (sole proprietorship, partnership, ete)
    b. Diseuss incorporated types (corporations, LLCs, ete)
2. Explore basies of intellectual property. DOK3, CEE1, CEE2, CEE3, CEE5, CEE6, CEE7, CEE9, CEE11, CEE12,
    CEE13,CEE15
    a. Discuss patents, patent types, value of a patent (or lack thereof)
    b. Discuss trademarks.
    e. Discuss copyrights.
    d. Diseuss trade secrets.
    e. Understand value of IP to a business entity
3. Investigate various labor laws.DOK3, CEE1, CEE2, CEE3, CEE4, CEE5, CEE4, CEE5, CEE6, CEE7, CEE8, CEE9,
    CEE10, CEE11, CEE13, CEE15
    a. Differentiate between 1099 and W2 employees
    b. Identify minimum wage requirements.
    e. Foumder equity
    d. Understand the concepts of diversity and cultural differences, and investigate the
        Americans with Disabilities Act.
    e. Understand Equal Employment Opportunity Commission's and impact on hiring
        practices
    f. Identify information that you are required to provide to employees.
```


Unit 8: Planning for Growth

Com
1. Understand the processes, strategies, and systems needed to guide the overall business Organization. ${ }^{\text {DOK3, }}$, CEE1, CEE2, CEE3, CEE5, CEE6, CEE7, CEES, CEEY, CEE11, CEE12, CEE13, CEE15 a. Understand the processes of business systems, channel management, purchasing/procurement, and distribution to facilitate daily operations. b. Research planning and controlling and compare types of management styles. e. Researeh appropriate job descriptions, sales interviews, and good hiring practices.
2. Recognize professional business organizations and their importance to entrepreneurs. ${ }^{\text {DOK3, }}$ CEE1, CEE2, CEE3, CEE5, CEE6, CEE7, CEE8, CEE9, CEE11, CEE12, CEE13, CEE15 a. Understand the importance of business incubators and the importance of having and being a mentor. b. Investigate social networking through the Internet, and civic and social organizations. e. Compare local cause related marketing strategies.
3. Develop and write a business planGEE13, CEE15 a. Understand the importance of business planning. b. Distinguish resources to seek business assistance such as Small Business Administration, small business development center, SCORE, Mississippi Development Authority, Innovate Mississippi, Mississippi Economic Council, Mississippi World Trade Center, service providers, local economic development associations, and chambers of commerce. e. Compile a business plan using word processing software. (Thought it should be compile since the actual writing process will happen in subsequent units.
4. Develop supporting materials for a business plan with details and evidence. CEE , CEE5, CEE6, CEE7, CEEY, CEE11, CEE12, CEE13, CEE14, CEE 15 a. Prepare and interpret graphs, diagrams, and charts and use them to develop business strategies and present these to others. b. Present business plan (individually and as a team with evidence from working journal) e. Research entrepreneurial exit strategies.
5. Develop financial projections. ${ }^{\text {DOK2 } 2 \text { DOK3, CEE1, CEE2, CEE3, CEE4, CEE5, CEE6, CEE7, CEE8, CEE9, CEE11, }}$ CEE13, CEE15 a. Understand the purpose of financial projections b. Not guesses, numbers are goals. e. Prepare a basic proforma income statement and cash flow projection
6. Explore ethical behavior as a necessity to business generally and entrepreneurship specifically. ${ }^{\text {DOK2, CEE1, CEE2, CEE3, CEE4, CEE5, CEE6, CEE7, CEE8, CEE9, CEE11, CEE13, CEE15 }}$ a. Analyze and understand cultural differences, responsibilities, and ethical behaviors. b. Promote social responsibility as a professional duty e. Promote environmental responsibilities as a professional duty
7. What is success and what does success look like? ${ }^{\text {DOK }}$, CEE1, CEE2, CEE3, CEE4, CEE5, CEE, , CEE7, CEES, CEEQ, CEE11, CEE15

1. Understand the processes, strategies, and systems needed to guide the overall business
organization. DOK3, CEE1, CEE2, CEE3, CEE5, CEE6, CEE7, CEE8, CEE9, CEE11, CEE12, CEE13, CEE15
a. Understand the processes of business systems, channel management,
purchasing/procurement, and distribution to facilitate daily operations.
b. Research planning and controlling and compare types of management styles.
e. Research appropriate job descriptions, sales interviews, and good hiring practices.
СЕЕ1, СЕЕ2, СЕЕ3, СЕЕ5, СЕЕ6, СЕЕ7, СЕЕ8, CEE9, CEE11, CEE12, CEE13, CEE15
a. Understand the importance of business incubators and the importance of having and
being a mentor.
b. Investigate social networking through the Internet, and civic and social organizations.
e. Compare local cause related marketing strategies.
GEE13, CEE15
a. Understand the impertance of business planning.
b. Distinguish resourees to seek business assistance such as Small Business
Administration, small business development center, SCORE, Mississippi Development
Authority, Innovate Mississippi, Mississippi Economic Council, Mississippi World
Trade Center, service providers, local economic development associations, and
ehambers of commerce.
e. Compile a business plan using word processing software. (Thought it should be
compile since the actual writing process will happen in subsequent units.
. Develop supporting materials for a business plan with details and evidence. ${ }^{\text {DOK3, CEE1, CEE2, }}$
a. Prepare and interpret graphs, diagrams, and charts and use them to develop business
strategies and present these to others.
b. Present business plan (individually and as a team with evidence from working journal)
e. Research entrepreneurial exit strategies.
2. Develop financial projections. ${ }^{\text {DOK2 } 2 \text { DOK3, CEE1, CEE2, CEE3, CEE4, CEE5, CEE6, CEE7, CEE8, CEE9, CEE14, }}$
CEE13, CEE15
a. Understand the purpose of financial projections
b. Not guesses, numbers are goals.
e. Prepare a basic proforma income statement and cash flow projection
6. Explore ethical behavior as a necessity to business generally and entrepreneurship
specifieally. ${ }^{\text {DOK2, CEE1, CEE2, CEE3, CEE4, CEE5, CEE6, CEEF, CEE8, CEEP, CEE11, CEE13, CEE15 }}$
a. Analyze and understand cultural differences, respensibilities, and ethical behaviors.
b. Promote social responsibility as a professional duty
e. Promote environmental responsibilities as a professional duty
CEE8, CEEY, CEE11, CEE15

MISSISSIPPI
MEPARTMENT OF
DEPARTMENTOF
EDUCATION
Ensuring a bright future for every child
a. Identify attributes that are typical descriptors of suceess
b. Compare and contrast personal stuecess vs business suceess (Venn diagram)
e. Diseuss the various contexts of an intrapreneurial and entrepreneurial mindset (i.e., start-up ventures, early growth firms, family business, rapid growth firms, existing eorporations, public sector entities).
d. Diseuss the significance of entrepreneurship
e. Understand the impact of entrepreneurship on society, economy, communities (i.e., create your own job, create your own wealth, create jobs for others, contribute to your communities).

Student Competency Profile

Student's Name:

\qquad

This record is intended to serve as a method of noting student achievement of the competencies in each unit. It can be duplicated for each student, and it can serve as a cumblative record of eompetencies achieved in the course.

In the blank before each competency, place the date on which the student mastered the eompetency.

Unit 1: Ideas that Create Value

	1.	Define value generation and differentiate between simple ideas and ideas with value.
	Z.	Explore idea generation and brainstorming methodologies.
	3.	Introduce basies of natural group dynamies.

Unit 2: Customer Validation: Do People Really Care?

	1.	Define startup and introduce concept of hypothesizing, experimenting, and iteration as it relates to a business model.
	z.	Introduce the Business Model Canvas tool.
	3.	Develop oral and written communication skills and how to engage potentiat eustomers.

Unit 3: Creating Winning Products

	1.	Examine translating eustomer feedback into product features and specifieations.
	Z.	Explore prototyping as a fundamental component of product/service development.
	3.	Understand concepts, tools and procedures needed for basic computer operations and to access, process, maintain, evaluate, and disseminate information for good business decisions.
	4.	Examine production and management components such as input suppliers.
Unit 4:	Entrepreneurial Finance	
	1.	Understand financial concepts and tools used in making business decisions.
	Z.	Understand accounting fundamentals.
	3.	Estimate the start up expenses of an entrepreneurial business.
	4.	Compare personal money management concepts, procedures and strategies.
	5.	Demonstrate the knowledge of good accounting and record keeping.
Unit 5: Marketing Strategy		
	1.	Explore powerful brands and feelings it elicits.
	Z.	Identify the elements of marketing (for example product, place, price, promotion).

	3.	Understand the concepts, processes, and systems needed to determine and satisfy eustomer needs/wants/expectations, meet business goals/objectives, and create new product/service ideas.
Unit 6: Sales and Distribution Channels		
	1.	Examine selling as a function of marketing.
	z.	Differentiate between various types of distribution channels and strategy.
Unit 7: Don't Break the Rules that Matter		
	1.	Explore various legal entities.
	2.	Explore basies of intellectual property.
	3.	Investigate various labor laws.
Unit 8: Planning for Growth		
	1.	Understand the processes, strategies, and systems needed to gtide the overall business organization.
	2.	Recognize professional business organizations and their importance to entrepreneurs.
	3.	Develop and write a business plan.
	4.	Develop supporting materials for a business plan with details and evidence.
	5.	Develop financial projections.
	6.	Explore ethical behavior as a necessity to business generally and entrepreneurship specifically.
	7.	What is success and what does success look like?

Appendix A: Unit References

All of the Entrepreneurship units use the same resources for each unit. You will find suggested resources listed below.

Aulet, B. (2013). Disciplined entrepreneurship: 24 steps to a successful startup. John Wiley \& Sons.

Bell, R., \& Bell, H. (2016). An enterprise opportunity for entrepreneurial students: Student enterprise development and experience assessed through the student voice. Edtueation + Training, 58(7/8), 751-765.

Center for Entrepreneurial Education. (2014, December 2). The national survey of entrepreneurship education: An overview of 2012-2014 survey data.

Consortium for Entrepreneurship Education. (2005). National standards of practice for entrepreneurship education. Retrieved from http://www.entre-ed.org/ what/stds-pracbrochure.pdf.

Constable, G. (2014). Tallking to humans: Success starts with understanding your customers. New York: Giff Constable.

Guiso, L., Pistaferri L., \& Schivardi, F. (2015). Learning entrepreneurship from other entrepreneurs? (NBER Working Paper No. 21775) Cambridge, MA: National Bureau of Economic Researeh.

Morelix, A., Fairlie, R. W., Reedy, E. J., \& Russell, J. (2016, August). Kauffman index of startup activity: State trends 2016. Available at SSRN: https://ssm.com/abstract=2830605 or http://dx.doi.org/10.2139/ssmn. 2830605.

Ruskovaara, E., \& Pihkala, T. (2015). Entrepreneurship education in schools: empirical evidence on the teacher's role. The Journal of Educational Research, 108(3), 236-249.

Scott, J. M., Penaluna, A., \& Thompson, J. L. (2016). A critical perspective on learning outcomes and the effectiveness of experiential approaches in entrepreneurship education: do we innovate or implement? Education + Training, 58(1), 82-93.

Smith, K., Petersen, J. L., \& Fund, N. V. (2006). What is educational entrepreneurship? In F. M. Hess (Ed.), Educational Entrepreneurship: Realities, Challenges, Possibilities, (pp. 21 44). Cambridge, MA: Harvard Education Press.

Solomon, G. T., \& May, K. (2014, Jantary). Revisiting the State of Entrepreneurship Education in the United States. In ICSB World Conference Proceedings (p. 1). International Council for Small business (ICSB).

Studdard, N., Dawson, M., Burton, S., Jackson, N., Leonard, B., Quisenberry, W., \& Bellevue, E. (2016). Nurturing social entrepreneurship and building social entrepreneurial selfefficacy: Focusing on primary and secondary schooling to develop fatture sociat entrepreneurs.
U.S. Small Business Administration. (2015). Mississippi small business profile. U.S. Small Business Administration, Office of Advocacy. Retrieved from https://www.sba.gov/sites/default/files/advocacy/MS_0.pdf.

Appendix B: Industry Standards

Crosswalk for Entrepreneurship									
	Units	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8
CEE1		\checkmark							
CEE2		\checkmark							
CEE3		\checkmark							
CEE4		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CEE5		\checkmark							
CEE6		\checkmark							
CEE7		\checkmark							
CEE8		\checkmark	\checkmark					\checkmark	\checkmark
CEE9		\checkmark							
CEE10									
CEE11		\checkmark							
CEE12		\checkmark							
CEE13		\checkmark							
CEE14		\checkmark	\checkmark					\checkmark	\checkmark
CEE15		\checkmark							

Consortium for Entrepreneurship Education(CEE)

CEE1 Entrepreneurial Processes: Understands concepts and processes associated with successful entrepreneurial performance (Discovery, Concept Development, Resourcing, Actualization, and Harvesting)

CEE2 Entrepreneurial Traits/Behaviors: Understands the personal traits/behaviors associated with successful entrepreneurial performance (Leadership, Personal Assessment, and Personal Management)

CEE3 Business Foundations: Understands fundamental business concepts that affect business decision making (Business Concepts, Business Activities)

CEE4 Communications and Interpersonal Skills: Understands concepts, strategies, and systems needed to interact effectively with others (Fundamentals of Communication, Staff Communications, Ethics in Commmnication, Group Working Relationships, and Dealing with Conflict)

CEE5 Digital Skills: Understands concepts and procedures needed for basic computer operations (Computer Basies and Computer Applications)

CEE6 Economics: Understands the economic principles and concepts fundamental to entrepreneurship/small business ownership (Basic Concepts, Cost Profit Relationships, Economic Indicators/Trends, Economic Systems, and International Concepts)

CEE7 Financial Literacy: Understands personal money management concepts, procedures, and strategies (Money Basies, Financial Services, and Personal Money Management)

CEE8 Professional Development: Understands concepts and strategies needed for career exploration, development, and growth (Career Planning and Job-Seeking Skills)

CEE9 Financial Management: Understands the financial concepts and tools used in making business decisions (Accounting, Finance, and Money Management)

CEE10 Htman Resotrree Management: Understands the concepts, systems, and strategies needed to acquire, motivate, develop, and terminate staff (Organizing, Staffing, Training/Development, Morale/Motivation, and Assessment)

CEE11 Information Management: Understands the concepts, systems, and tools needed to access, process, maintain, evaluate, and disseminate information for business decision-making (Record keeping, Technology, Information Aequisition)

CEE12 Marketing Management: Understands the concepts, processes, and systems needed to determine and satisfy customer needs/wants/expectations, meet business goals/objectives, and create new product/service ideas (Product/Service Creation, Marketing information Management, Promotion, Pricing, and Selling)

EEE13 Operations Management: Understands the processes and systems implemented to facilitate daily business operations (Business Systems, Channel Management, Purehasing/Procurement, and Daily Operations)

CEE14 Risk Management: Understands the concepts, strategies, and systems that businesses implement and enforce to minimize loss (Business Risks, and Legal Considerations)

CEE15 Strategic Management: Understands the processes, strategies, and systems needed to gride the overall business organization (Planning and Controlling)

Appendix C: 21st Century Skills+

$21^{\text {st_Century Crosswalk for Entrepreneurship }}$											
	Units	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8		
$21^{\text {st }}$-Century Standards											
CS1		\checkmark									
CS2		\checkmark									
CS3		\checkmark									
CS4		\checkmark									
CS5		\checkmark									
CS6		\checkmark									
Cs7		\checkmark									
CS8		\checkmark									
CS9		\checkmark									
CS10		\checkmark									
CS11		\checkmark									
CS12		\checkmark									
CS13		\checkmark									
CS14		\checkmark									
CS15		\checkmark									
CS16		\checkmark									

CSS1-21st Century Themes

CS1 Global Awareness

1. Using 21st centryy skills to maderstand and address global isstres
z. Learning from and working collaboratively with individuals representing diverse cultures, religions, and lifestyles in a spirit of muttal respect and open dialogue in personal, work, and community contexts
2. Understanding other nations and cultures, including the use of non-English tanguages
CS2 Financial, Economic, Business, and Entrepreneurial Literacy
3. Knowing how to make appropriate personal economic choices
4. Understanding the role of the economy in society
5. Using entrepreneurial skills to enhance workplace productivity and career options

CS3 Civic Literacy

1. Participating effectively in civic life through knowing how to stay informed and understanding governmental processes
z. Exercising the rights and obligations of citizenship at local, state, national, and global levels
2. Understanding the local and global implications of civic decisions

CS4 Health Literaey

1. Obtaining, interpreting, and understanding basic health information and services and using such information and services in ways that enhance health
z. Understanding preventive physical and mental health measures, including proper diet, nutrition, exercise, risk avoidance, and stress reduction
2. Using available information to make appropriate health related decisions

[^0]4. Establishing and monitoring personal and family health goals
5. Understanding national and international public health and safety issurs

CS5 Environmental Literacy

1. Demonstrate knowledge and understanding of the environment and the eireumstances and conditions affecting it, particularly as relates to air, climate, land, food, energy, water, and ecosystems.
z. Demenstrate knowledge and understanding of society's impact on the naturat world (e.g., population growth, population development, resouree consumption rate, ete.).
2. Investigate and analyze environmental issues, and make aceurate conclusions about effective solutions.
3. Take individual and collective action toward addressing environmental challenges (e.g., participating in global actions, designing solutions that inspire action on environmental isstes).

ESS2-Learning and Innovation Skills
CS6 Creativity and Innovation

1. Think Creatively
z. Work Creatively with Others
2. Implement Innovations

CS7 Critical Thinking and Problem Solving

1. Reason Effectively
z. Use Systems Thinking
2. Make Judgments and Decisions
3. Solve Problems

CS8 Communication and Collaboration

1. Communicate Clearly
z. Collaborate with Others

CSS3-Information, Media and Technology Skills
CS9 Information Literacy

1. Access and Evaluate Information
z. Use and Manage Information

CS10 Media Literacy

1. Analyze Media
z. Create Media Products

CS11 ICT Literacy

1. Apply Technology Effectively

CSS4-Life and Career Skills
CS12 Flexibility and Adaptability

1. Adapt to change
z. Be Flexible

CS13 Initiative and Self-Direction

1. Manage Goals and Time
z. Work Independently

3. Be Self-directed Learners
CS14 Social and Cross-Cultural Skills
1. Interact Effectively with others
z. Work Effectively in Diverse Teams
CS15 Productivity and Accountability
1. Manage Projects
z. Produce Results
CS16 Leadership and Responsibility
1. Guide and Lead Others
z. Be Responsible to Others

Appendix D: College and Career Ready Standards

College and Career Ready English I

Reading Literature Key Ideas and Details
RL.9.1 Cite strong and thorough textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.
RL.9.2 Determine a theme or central idea of a text and analyze in detail its development over the course of the text, including how it emerges and is shaped and refined by specific details; provide an objective strmmary of the text.
RL.9.3 Analyze how complex characters (e.g., those with multiple or conflicting motivations) develop over the course of a text, interact with other characters, and advance the plot or develop the theme.

Craft and Structure

RL.9.4 Determine the meaning of words and phrases as they are used in the text, including figurative and connotative meanings; analyze the cumulative impact of specific word choices on meaning and tone (e.g., how the language evokes a sense of time and place; how it sets a formal or informal tone).
RL.9.5 Analyze how an author's choices concerning how to structure a text, order events within it (e.g., parallel plots), and manipulate time (e.g., pacing, flashbacks) create such effects as mystery, tension, or strprise.
RL.9.6 Analyze a particular point of view or cultural experience reflected in a work of literature from outside the United States, drawing on a wide reading of world literature.

Integration of Knowledge and Ideas

RL.9.7 Analyze the representation of a subject or a key scene in two different artistic mediums, including what is emphasized or absent in each treatment (e.g., Auden's "Musée des Beaux Arts" and Breughel's Landscape with the Fall of Icarus).
RL.9.8 Not applicable to literature.

MISSISSIPPI
DEPARTMENTOF
EDUCATION

College and Career Ready Standards English I

RL.9.9 Analyze how an author draws on and transforms source material in a specific work (e.g., how Shakespeare treats a theme or topic from Ovid or the Bible or how a later author draws on a play by Shakespeare).

Range of Reading and Level of Text Complexity

RL. 9.10 By the end of grade 9 , read and comprehend literature, including stories, dramas, and poems, in the grades $9-10$ text complexity band proficiently, with seaffolding as needed at the high end of the range.

College and Career Ready Standards English I
Reading Informational Text Key Ideas and Details RI.9.3 Analyze how the author unfolds an analysis or series of ideas or events, including the order in which the points are made, how they are introduced and developed, and the connections that are drawn between them.

Graft and Structure
RI.9.5 Analyze in detail how an author's ideas or claims are developed and refined by particular sentences, paragraphs, or larger portions of a text (e.g., a section or chapter).
RI.9.6 Determine an author's point of view or purpose in a text and analyze how an author uses rhetoric to advance that point of view or purpose.

Integration of Knowledge and Ideas

RI.9.7 Analyze various accounts of a subject told in different mediums (e.g., a person's life story in both print and multimedia), determining which details are emphasized in each account. RI.9.8 Delineate and evaluate the argument and specific claims in a text, assessing whether the reasoning is valid and the evidence is relevant and sufficient; identify false statements and fallacious reasoning. RI.9.9 Analyze seminal U.S. documents of historical and literary significance (e.g., Washington's Farewell Address, the Gettysburg Address, Roosevelt's Four Freedoms speech, King's "Letter from Birmingham Jail"), including how they address related themes and concepts.

College and Career Ready English I

Writing Text Types and Purposes

W.9.1 Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence.
W.9.1a Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among claim(s), counterclaims, reasons, and evidence. W.9.1b Develop claim(s) and counterclaims fairly, supplying evidence for each while pointing out the strengths and limitations of both in a manner that anticipates the audience's knowledge level and concerns. W.9.1c Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
W.9.1d Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
W.9.1e Provide a concluding statement or section that follows from and supports the argument presented. W.9.2 Write informativelexplanatory texts to examine and convey complex ideas, concepts, and information clearly and accurately through the effective selection, organization, and analysis of content. W.9.2a Introduce a topic; organize complex ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension. W.9.2b Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic. W.9.2c Use appropriate and varied transitions to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.

College and Career Ready English I

W.9.2d Use precise language and domain-specific vocabulary to manage the complexity of the topic. W.9.2e Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
W. 9.2 Provide a concluding statement or section that follows from and supperts the information or explanation presented (e.g., atticulating implications or the signifieance of the topic).
W.9.3 Write narratives to develop real or imagined experiences or events using effective technique, wellehosen details, and well-structured event sequences.
W.9.3a Engage and orient the reader by setting out a problem, situation, or observation, establishing one or multiple point(s) of view, and introducing a narrator and/or characters; create a smooth progression of experiences or events.
W.9.3b Use narrative techniques, such as dialogue, pacing, description, reflection, and multiple plot lines, to develop experiences, events, and/or characters.
W.9.3c Use a variety of techniques to sequence events so that they build on one another to create a coherent whole.
W.9.3d Use precise words and phrases, telling details, and sensory language to convey a vivid picture of the experiences, events, setting, and/or characters.
W.9.3e Provide a conelusion that follows from and reflects on what is experienced, observed, or resolved over the course of the narrative.

Production and Distribution of Writing

W.9.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (Grade-specific expectations for writing types are defined in standards 1-3 above.)
W.9.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (Editing for conventions should demonstrate command of Language standards 13 up to and including grades 9-10.) W.9.6 Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Research to Build and Present Knowledge

W. 9.7 Conduct short as well as more sustained research projects to answer a question (including a selfgenerated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

College and Career Ready English I
W.9.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.
W.9.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. W.9.9a Apply grades 9-10 Reading standards to literature (e.g., "Analyze how an author draws on and transforms source material in a specific work [e.g., how Shakespeare treats a theme or topic from Ovid or the Bible or how a later author draws on a play by Shakespeare]").
W.9.9b Apply grades 9-10 Reading standards to literary nonfietion (e.g., "Delineate and evaluate the argument and specific claims in a text, assessing whether the reasoning is valid and the evidence is relevant and sufficient; identify false statements and fallacious reasoning").

Range of Writing

W.9.10 Write routinely over extended time frames (time for research, reflection, and revision) and shorter time frames (a single sitting or a day or two) for a range of tasks, purposes, and audience.

College and Career Ready English I

SL.9.1 Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher led) with diverse partners on grades 9-10 topies, texts, and isstes, building on others' ideas and expressing their own clearly and perstasively.
SL.9.1a Come to diseussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other researeh on the topic or issue to stimmate a thoughtful, well reasoned exchange of ideas.
SL.9.1b Work with peers to set rules for collegial discussions and decision making (e.g., informal consensus, taking votes on key issues, presentation of alternate views), clear goals and deadlines, and individual roles as needed.
SL.9.1c Propel conversations by posing and responding to questions that relate the current discussion to broader themes or larger ideas; actively incorporate others into the discussion; and clarify, verify, or challenge ideas and conclusions.
SL.9.1d Respond thoughtfully to diverse perspectives, summarize points of agreement and disagreement, and, when warranted, qualify or justify their own views and understanding and make new connections in light of the evidence and reasoning presented.
SL.9.2 Integrate multiple sources of information presented in diverse media or formats (e.g., visually, quantitatively, orally) evaluating the credibility and aceuracy of each source.
SL.9.3 Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric, identifying any fallacious reasoning or exaggerated or distorted evidence.

Presentation of Knowledge and Ideas

SL.9.4 Present information, findings, and supporting evidence clearly, concisely, and logically such that tisteners can follow the line of reasoning and the organization, development, substance, and style are appropriate to purpose, audience, and task.

College and Career Ready English I

SL.9.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. SL.9.6 Adapt speech to a variety of contexts and tasks, demonstrating command of formal English when indicated or appropriate. (See grades 9-10 Language standards 1 and 3 for specific expectations.)

College and Career Ready English I

Language
Conventions of Standard English
L.9.1 Demonstrate command of the conventions of standard English grammar and usage when writing or speaking.
L.9.1a Use parallel structure.*
L.9.1b Use various types of phrases (noun, verb, adjectival, adverbial, participial, prepositional, absolute) and clauses (independent, dependent; noun, relative, adverbial) to convey specific meanings and add variety and interest to writing or presentations.
L.9.2 Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing.
L.9.2a Use a semicolon (and perhaps a conjunctive adverb) to link two or more closely related independent clauses.
L.9.2b Use a colon to introduce a list or quotation.
L.9.2e Spell correctly

Knowledge of Language

L.9.3 Apply knowledge of language to understand how language functions in different contexts, to make effective choices for meaning or style, and to comprehend more fully when reading or listening L.9.3a Write and edit work so that it conforms to the guidelines in a style manual (e.g., MLA Handbook, Ttrabian's Mantal for Writers) appropriate for the discipline and writing type.

Vocabulary Acquisition and Use

L.9.4 Determine or clarify the meaning of unknown and multiple-meaning words and phrases based on grades $9-10$ reading and content, choosing flexibly from a range of strategies.
L.9.4a Use context (e.g., the overall meaning of a sentence, paragraph, or text; a word's position or function in a sentence) as a clue to the meaning of a word or phrase.
L.9.4b Identify and correctly use patterns of word changes that indicate different meanings or parts of speech (e.g., analyze, analysis, analytical; advocate, advocacy).

College and Career Ready English I
L.9.4c Consult general and specialized reference materials (e.g., dictionaries, glossaries, thesauruses), both print and digital, to find the pronunciation of a word or determine or clarify its precise meaning, its part of speech, or its etymology.
L.9.4d Verify the preliminary determination of the meaning of a word or phrase (e.g., by checking the inferred meaning in context or in a dictionary).
L.9.5 Demonstrate understanding of figurative language, word relationships, and nuances in word meanings.
L.9.5a Interpret figures of speech (e.g., euphemism, oxymoron) in context and analyze their role in the text. L.9.5b Analyze ntances in the meaning of words with similar denotations.
L.9.6 Acquire and use accurately general academic and domain-specific words and phrases, sufficient for reading, writing, speaking, and listening at the college and career readiness level; demonstrate independence in gathering vocabulary knowledge when considering a word or phrase important to comprehension or expression.

College and Career Ready English H
Range of Reading and Level of Text Complexity
RL.10.10 By the end of grade 10 , read and comprehend literature, ineluding stories, dramas, and poems, at the high end of the grades $9-10$ text complexity band independently and proficiently.

Grades 9-10: Literacy in History/SS
Reading in History/Social Studies Key Ideas and Details
RH.9-10.1 Cite specific textual evidence to support analysis of primary and secondary sources, attending to such features as the date and origin of the information.
RH.9-10.2 Determine the central ideas or information of a primary or secondary source; provide an accurate summary of how key events or ideas develop over the course of the text.
RH.9-10.3 Analyze in detail a series of events deseribed in a text; determine whether earlier events caused tater ones or simply preceded them.

Craft and Structure

RH.9-10.4 Determine the meaning of words and phrases as they are used in a text, including vocabulary describing political, social, or economic aspects of history/social seience.
RH.9-10.5 Analyze how a text uses structure to emphasize key points or advance an explanation or analysis.
RH.9-10.6 Compare the point of view of two or more authors for how they treat the same or similar topics, including which details they include and emphasize in their respective accounts.

Integration of Knowledge and Ideas

RH.9-10.7 Integrate quantitative or technical analysis (e.g., charts, research data) with qualitative analysis in print or digital text.
RH.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author's claims.
RH.9-10.9 Compare and contrast treatments of the same topic in several primary and secondary sources.

Range of Reading and Level of Text Complexity

RH.9-10.10 By the end of grade 10 , read and comprehend history/social studies texts in the grades $9-10$ text complexity band independently and proficiently.

Grades 9-10: Literacy in Science and Technical Subjects
Reading in Science and Technical Subjects Key Ideas and Details
RST.9-10.1 Cite specific texttal evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions.
RST.9-10.2 Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an aceurate summary of the text.
RST.9-10.3 Follow precisely a complex multistep procedure when carrying out experiments, taking meastrements, or performing technieal tasks, attending to special cases or exceptions defined in the text.

Craft and Structure

RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades $9-10$ texts and topics. RST.9-10.5 Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
RST.9-10.6 Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.

Integration of Knowledge and Ideas

RST.9-10.7 Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
RST.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author's claim or a recommendation for solving a scientific or technical problem.
RST.9-10.9 Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts

Range of Reading and Level of Text Complexity

RST.9-10.10 By the end of grade 10 , read and comprehend science/technical texts in the grades $9-10$ text complexity band independently and proficiently.

Grades 9-10: Writing in History/SS, Seience, and Technieal Subjects
Writing Text Types and Purposes
WHST.9-10.1 Write arguments focused on discipline-specific content.
WHST.9-10.1a Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and ereate an organization that establishes clear relationships among the claim(s), counterelaims, reasons, and evidence.
WHST.9-10.1b Develop claim(s) and counterclaims fairly, supplying data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form and in a manner that anticipates the audience's knowledge level and concerns.
WHST.9-10.1c Use words, phrases, and clauses to link the major sections of the text, create cohesion, and elarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
WHST.9-10.1d Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
WHST.9-10.1e Provide a concluding statement or section that follows from or supports the argument presented.
WHST.9-10.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
WHST.9-10.2a Introduce a topic and organize ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
WHST.9-10.2b Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.

Grades 9-10
Writing in History/SS, Science, and Technical Subjects
WHST.9-10.2c Use varied transitions and sentence structures to link the major sections of the text, create eohesion, and clarify the relationships among ideas and concepts.
WHST.9-10.2d Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the diseipline and context as well as to the expertise of likely readers.
WHST.9-10.2e Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
WHST.9-10.2 f Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the signifieance of the topic).
WHST.9-10.3 Not Applicable

Production and Distribution of Writing

WHST.9-10.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
WHST.9-10.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. WHST.9-10.6 Use technology, including the Internet, to produce, publish, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.

Research to Build and Present Knowledge

WHST.9-10.7 Conduct short as well as more sustained research projects to answer a question (including a self generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

WHST. 9-10.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.
WHST.9-10.9 Draw evidence from informational texts to support analysis, reflection, and research.
Grades 9-10
Writing in History/SS, Science, and Technieal Subjects
Range of Writing
WHST.9-10.10 Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.

English II
Reading Literature Key Ideas and Details
RL.11.1 Cite strong and thorough textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text, including determining where the text leaves matters uncertain. RL.11.2 Determine two or more themes or central ideas of a text and analyze their development over the course of the text, including how they interact and build on one another to produce a complex account; provide an objective summary of the text.
RL.11.3 Analyze the impact of the author's choices regarding how to develop and relate elements of a story or drama (e.g., where a story is set, how the action is ordered, how the characters are introduced and developed).

Craft and Structure

RL.11.4 Determine the meaning of words and phrases as they are used in the text, ineluding figurative and eonnotative meanings; analyze the impact of specific word choices on meaning and tone, including words with multiple meanings or language that is particularly fresh, engaging, or beautiful. (Inelude Shakespeare as well as other authors.)

RL.11.5 Analyze how an author's choices concerning how to structure specific parts of a text (e.g., the choice of where to begin or end a story, the choice to provide a comedic or tragic resolution) contribute to its overall structure and meaning as well as its aesthetic impact.
RL.11.6 Analyze a case in which grasping a point of view requires distinguishing what is directly stated in a text from what is really meant (e.g., satire, sareasm, irony, or understatement).

Integration of Knowledge and Ideas

RL.11.7 Analyze multiple interpretations of a story, drama, or poem (e.g., recorded or live production of a play or recorded novel or poetry), evaluating how each version interprets the source text. (Include at least one play by Shakespeare and one play by an American dramatist.)
RL.11.8 Not applicable to literature.
RL.11.9 Demonstrate knowledge of eighteenth-, nineteenth- and early-twentieth century foundational works of American literature, including how two or more texts from the same period treat similar themes or topics.

Range of Reading and Level of Text Complexity

RL.11.10 By the end of grade 11, read and comprehend literature, including stories, dramas, and poems, in the grades 11 -CCR text complexity band proficiently, with seaffolding as needed at the high end of the range.

English II
Reading Informational Text Key Ideas and Details
R1.11.3 Analyze a complex set of ideas or sequence of events and explain how specific individuals, ideas, or events interact and develop over the course of the text.

Craft and Structure

R1.11.4 Determine the meaning of words and phrases as they are used in a text, including figurative, connotative, and technical meanings; analyze how an author uses and refines the meaning of a key term or terms over the course of a text (e.g., how Madison defines faction in Federalist No. 10). R1.11.5 Analyze and evaluate the effectiveness of the structure an author uses in his or her exposition or argument, including whether the structure makes points clear, convincing, and engaging. R1.11.6 Determine an author's point of view or purpose in a text in which the rhetoric is particularly effective, analyzing how style and content contribute to the power, perstasiveness or beaty of the text.

Integration of Knowledge and Ideas

R1.11.7 Integrate and evaluate multiple sources of information presented in different media or formats (e.g., visually, quantitatively) as well as in words in order to address a question or solve a problem. R1.11.8 Delineate and evaluate the reasoning in seminal U.S. texts, including the application of constitutional principles and use of legal reasoning (e.g., in U.S. Supreme Court majority opinions and dissents) and the premises, purposes, and arguments in works of public advocacy (e.g., The Federalist, presidential addresses).
R1.11.9 Analyze seventeenth-, eighteenth-, and nineteenth-century foundational U.S. documents of historical and literary significance (including Them Declaration of Independence, the Preamble to the Constitution, the Bill of Rights, and Lincoln's Second Inaugural Address) for their themes, purposes, and rhetorical features.

Range of Reading and Level of Text Complexity

R1.11.10 By the end of grade 11, read and comprehend literary nonfiction in the grades 11-CCR text eomplexity band proficiently, with seaffolding as needed at the high end of the range.

English III
Writing
W.11.1 Write arguments to support claims in an analysis of substantive topies or texts, using valid reasoning and relevant and sufficient evidence.
W.11.1a Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences claim(s), eounterelaims, reasons, and evidence.
W.11.1b Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant evidence for each while pointing out the strengths and limitations of both in a manner that anticipates the audience's knowledge level, concerns, values, and possible biases.
W.11.1e Use words, phrases, and clatses as well as varied syntax to link the major sections of the text, ereate cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
W.11.1d Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
W.11.1e Provide a concluding statement or section that follows from and supports the argument presented. W.11.2 Write informative/explanatory texts to examine and convey complex ideas, concepts, and information clearly and accurately through the effective selection, organization, and analysis of content. W.11.2a Introduce a topic; organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.

English II

W. 11.2 b Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic.
W.11.2c Use appropriate and varied transitions and syntax to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.
W.11.2d Use precise language, domain-specific vocabulary, and techniques such as metaphor, simile, and analogy to manage the complexity of the topic.
W.11.2e Establish and maintain a formal style and objective tone while attending to the norms and eonventions of the discipline in which they are writing.
W.11.2f Provide a concluding statement or section that follows from and supports the information or explanation presented (e.g., articulating implications or the significance of the topic).
W.11.3 Write narratives to develop real or imagined experiences or events using effective technique, wellehosen details, and well-structured event sequences.
W.11.3a Engage and orient the reader by setting out a problem, sittation, or observation and its significance, establishing one or multiple point(s) of view, and introducing a narrator and/or characters; ereate a smooth progression of experiences or events.
W.11.3b Use narrative techniques, such as dialogue, pacing, description, reflection, and multiple plot lines, to develop experiences, events, and/or characters.
W.11.3e Use a variety of techniques to sequence events so that they build on one another to create a
coherent whole and build toward a particular tone and outcome (e.g., a sense of mystery, suspense, growth, or resolution).
W.11.3d Use precise words and phrases, telling details, and sensory language to convey a vivid picture of the experiences, events, setting, and/or characters.
W.11.3e Provide a conclusion that follows from and reflects on what is experienced, observed, or resolved over the course of the narrative.

Production and Distribution of Writing
W.11.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (Grade-specific expectations for writing types are defined in standards 1-3 above.)

English HI

W.11.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (Editing for conventions should demonstrate command of Language standards 1-3 up to and including grades 11-12.) W.11.6 Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.

Research to Build and Present Knowledge

W.11.7 Conduct short as well as more sustained research projects to answer a question (including a selfgenerated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. W.11.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. W.11.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. W.11.9a Apply grades 11-12 Reading standards to literature (e.g., "Demonstrate knowledge of eighteenth-, nineteenth and early twentieth century foundational works of American literature, including how two or more texts from the same period treat similar themes or topics").
W.11.9b Apply grades 11-12 Reading standards to literary nonfiction (e.g., "Delineate and evaluate the reasoning in seminal U.S. texts, including the application of constitutional principles and use of legal reasoning [e.g., in U.S. Supreme Court Case majority opinions and dissents] and the premises, purposes, and arguments in works of public advocacy [e.g., The Federalist, presidential addresses]").

Range of Writing

W.11.10 Write routinely over extended time frames (time for research, reflection, and revision) and shorter time frames (a single sitting or a day or two) for a range of tasks, purposes, and audiences.

English III
Speaking and Listening
Comprehension and Collaboration
SL.11.1 Initiate and participate effectively in a range of collaborative diseussions (one on-one, in groups, and teacher led) with diverse partners on grades 1112 topies, texts, and isstes, building on others' ideas and expressing their own clearly and persuasively.
SL11.1a Come to diseussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.
SL.11.1b Work with peers to promote civil, democratic discussions and decision making, set clear goals and deadlines, and establish individual roles as needed.
SL.11.1c Propel conversations by posing and responding to questions that probe reasoning and evidence;
ensure a hearing for a full range of positions on a topic or issue; clarify, verify, or challenge ideas and conclusions; and promote divergent and creative perspectives.
SL.11.1d Respond thoughtfully to diverse perspectives; synthesize comments, claims, and evidence made on all sides of an issue; resolve contradictions when possible; and determine what additional information or research is required to deepen the investigation or complete the task.
SL.11.2 Integrate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, orally) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data. SL.11.3 Evaluate a speaker's point of view, reasoning, and use of evidence and rhetoric, assessing the stance, premises, links among ideas, word choice, points of emphasis, and tone used.

Presentation of Knowledge and Ideas

SL.11.4 Present information, findings, and supporting evidence, conveying a clear and distinct perspective, stech that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks.

English II
SL11.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. SL.11.6 Adapt speech to a variety of contexts and tasks, demonstrating a command of formal English when indicated or appropriate. (See grades 11-12 Language standards 1 and 3 for specific expectations.)

English II
Language
Conventions of Standard English
L.11.1a Apply the understanding that usage is a matter of convention, can change over time, and is sometimes contested.
L.11.1b Resolve issues of complex or contested usage, consulting references (e.g., Merriam Webster's Dietionary of English Usage, Garner's Modern American Usage) as needed.
L.11.2a Observe hyphenation conventions.
L.11.3a Vary syntax for effect, consulting references (e.g., Tufte's Artful Sentences) for guidance as
needed; apply an understanding of syntax to the study of complex texts when reading.

Vocabulary Acquisition and Use

L.11.4 Determine or clarify the meaning of unknown and multiple-meaning words and phrases based on grades 11-12 reading and content, choosing flexibly from a range of strategies.
L.11.4b Identify and correctly use patterns of word changes that indicate different meanings or parts of speech (e.g., conceive, conception, conceivable).

English IV
Range of Reading and Level of Text Complexity
RL.12.10 By the end of grade 12, read and comprehend literature, including stories, dramas, and poems, at the high end of the grades 11-CCR text complexity band independently and proficiently.

Grades 11-12: Literacy in History/SS
Reading in History/Social Studies Key Ideas and Details
RH.11-12.1 Cite specific textual evidence to support analysis of primary and secondary sources, connecting insights gained from specific details to an understanding of the text as a whole. RH.11-12.2 Determine the central ideas or information of a primary or secondary source; provide an accurate summary that make clear the relationships among the key details and ideas. RH.11-12.3 Evaluate various explanations for actions or events and determine which explanation best accords with textual evidence, acknowledging where the text leaves matters uncertain. Craft and Structure RH.11-12.4 Determine the meaning of words and phrases as they are used in a text, including analyzing how an author uses and refines the meaning of a key term over the course of a text (e.g., how Madison defines faction in Federalist No. 10).
RH.11-12.5 Analyze in detail how a complex primary source is structured, including how key sentences, paragraphs, and larger portions of the text contribute to the whole.
RH.11-12.6 Evaluate atthors' differing points of view on the same historical event or isstue by assessing the authors' claims, reasoning, and evidence. Integration of Knowledge and Ideas
Rh.11-12.7 Integrate and evaluate multiple sourees of information presented in diverse formats and media (e.g., visually, quantitatively, as well as in words) in order to address a question or solve a problem. RH.11-12.8 Evaluate an author's premises, claims, and evidence by corroborating or challenging them with other information.
RH.11-12.9 Integrate information from diverse sources, both primary and secondary, into a coherent understanding of an idea or event, noting discrepancies among sources. Range of Reading and Level of Text Complexity
RH.11-12.10 By the end of grade 12 , read and comprehend history/social studies texts in the grades 11 CCR text complexity band independently and proficiently.

Grades 11-12: Literacy in Science and Technical Subjects
Reading in Science and Technical Subjects Key Ideas and Details
RST. 11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

Craft and Structure

RST.11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases
as they are used in a specific seientific or technical context relevant to grades 1112 texts and topies. RST.11-12.5 Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
RST.11-12.6 Analyze the author's purpose in providing an explanation, deseribing a procedure, or diseussing an experiment in a text, identifying important issues that remain unresolved.
RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

Range of Reading and Level of Text Complexity

RST.11-12.10 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

Grades 11-12: Writing I History/SS, Science and Technical Subjects
Writing
Text Types and Purposes
WHST.11-12.1a Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences the claim(s), counterelaims, reasons, and evidence.
WHST.11-12.1b Develop claim(s) and counterelaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline appropriate form that anticipates the audience's knowledge level, concerns, values, and possible biases.
WHST.11-12.1e Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
WHST.11-12.2a Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphies (e.g., figures, tables), and multimedia when useful to aiding comprehension.

Grades 11-12: Writing I History/SS, Science and Technical Subjects
WHST.11-12.2d Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers.

Production and Distribution of Writing

WHST.11-12.6 Use technology, ineluding the Internet, to produce, publish, and update individual or shared writing products in respense to ongoing feedback, including new arguments or information. WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sourees, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

Appendix D: College and Career Ready Standards

Number and Quantity

Reason quantitatively and use unites to solve problems
N-Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the seale and the origin in graphs and data displays.*
N Q. 2 Define appropriate quantities for the purpose of descriptive modeling.*
N-Q. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*

Algebra
Analyze and solve linear equations and pairs of simultaneous linear equations
8.EE. 8 Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple case by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
e. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Interpret the structure of expressions

A SSE. 1 Interpret expressions that represent a quantity in terms of its context.*
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r}) \mathrm{n}$ as the product of P and a factor not depending on P .
A SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*
e. Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15 t$ can be rewritten as $[1.151 / 12] 12 t \approx 1.01212 t$ to reveal the approximate equivalent monthly interest rate if the annmal rate is 15%.
Creating equations that describe numbers or relationships
A-CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.* A-CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*

A-CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.* A CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm 's law $\mathrm{V}=\mathrm{IR}$ to highlight resistance R .*

Solve equations and inequalities in one variable
A REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Solve systems of equations

A-REI. 5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. A REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), foeusing on pairs of linear equations in two variables.

Represent and solve equations and inequalities graphically

A-REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
A-REI. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=$ $g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using teehnology to graph the functions, make tables of values, or find successive approximations. Inelude cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
A REI. 12 Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half planes.

Functions
Define, evaluate, and compare functions
8.F. 1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an imput and the corresponding output. 1 8.F. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.F. 3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

Use functions to model relationships between quantities

8.F. 4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. 8.F. 5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch agraph that exhibits the qualitative features of a function that has been described verbally.

Understand the concept of a function and use function notation
F-IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $\mathrm{y}=\mathrm{f}(\mathrm{x})$.

F-IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)-f(1)=1, f(n+1)=f(n) \neq$ $\mathrm{f}(\mathrm{n}-1)$ for $\mathrm{n} \geq 1$.

Interpret functions that arise in applications in terms of the context
FIF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* F-IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
F-IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* Analyze functions using different representations Supporting
FIF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
F-IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal deseriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Build a function that models a relationship between two quantities
F-BF. 1 Write a function that describes a relationship between two quantities.* a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
F-BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*

Construct and compare linear, quadratic, and exponential models and solve problems
F LE. 1 Distinguish between sittations that can be modeled with linear functions and with exponential functions.*
a. Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.
b. Recognize sittations in which one quantity changes at a constant rate per unit interval relative to another. e. Recognize sittations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F-LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).* F-LE. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.* Interpret expressions for functions in terms of the sittation they model Supporting
F LE. 5 Interpret the parameters in a linear or expenential function in terms of a context.*

Geometry

Understand and apply the Pythagorean Theorem
8.G.6 Explain a proof of the Pythagorean Theorem and its converse.
8.G. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Experiment with transformations in the plane

G-CO. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular are.

[^1]S-ID. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*
S.ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*

Summarize, represent, and interpret data on two categorical and quantitative variables
S-ID. 5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.*
S-ID. 6 Represent data on two quantitative variables on a seatter plot, and describe how the variables are related.*
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
c. Fit a linear function for a seatter plot that suggests a linear association.

Interpret linear models

S-ID. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.*
S-ID. 8 Compute (using teehnology) and interpret the correlation coefficient of a linear fit.*
S-ID. 9 Distinguish between correlation and causation.*
Algebra I
Number and Quantity
Use properties of rational and irrational numbers
N-RN. 3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Reason quantitatively and use units to solve problems

N-Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose
and interpret units consistently in formulas; choose and interpret the seale and the origin in graphs and data displays.*
N-Q. 2 Define appropriate quantities for the purpose of descriptive modeling.*
N-Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*

Algebra

Interpret the structure of expressions
A SSE. 1 Interpret expressions that represent a quantity in terms of its context.*
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r}) \mathrm{n}$ as the product of P and a factor not depending on P .
A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x 4-y 4$ as ($x 2$)
$2-\left(y_{2}\right) 2$ thus recognizing it as a difference of squares that can be factored as $\left(x_{2}-y_{2}\right)\left(x_{2}+y_{2}\right)$.

Write expressions in equivalent forms to solve problems

A-SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*
a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
e. Use the properties of expenents to transform expressions for expenential functions. For example the expression $1.15 t$ can be rewritten as $[1.151 / 12] 12 t \sim 1.01212 t$ to reveal the approximate equivalent monthly interest rate if the anntal rate is 15%.

Algebra I
Perform arithmetic operations on polynomials
A-APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Understand the relationship between zeres and factors of polynomials

A-APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Create equations that describe numbers or relationships

A CED. 1 Create equations and inequalities in one variable and use them to solve problems. Inelude equations arising from linear and quadratic functions, and simple rational and exponential functions.* A-CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*
A-CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.* A-CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R .*

Understand solving equations as a process of reasoning and explain the reasoning
A REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Solve equations and inequalities in one variable

A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
A-REI. 4 Solve quadratic equations in one variable.
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p) 2=q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $\times 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm$ bi for real numbers a and b.

Algebra I
Solve systems of equations
A-REI. 5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
A-REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Represent and solve equations and inequalities graphically

A REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
A REI. 11 Explain why the x coordinates of the points where the graphs of the equations $y=f(x)$ and $y=$ $g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases Where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
A-REI. 12 Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the correspending half planes.

Functions
Understand the concept of a function and use function notation
F-IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
F-IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacei sequence is defined recursively by $f(0)-f(1)-1, f(n+1)-f(n) \neq$ $\mathrm{f}(\mathrm{n}-1)$ for $\mathrm{n} \geq 1$

Interpret functions that arise in applications in terms of the context

F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features inelude: intercepts; intervals where the funetion is inereasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodieity.* F IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
F-IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*

Algebra I
Analyze functions using different representations
F-IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
F-IF. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
F-IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. B

Build a function that models a relationship between two quantities
F-BF. 1 Write a function that describes a relationship between two quantities.*
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.

Build new functions from existing functions
F-BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them

Construct and compare linear, quadratic, and exponential models and solve problems
F-LE. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions.*
a. Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.
b. Recognize sittations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F LE. 2 Construct linear and expenential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input output pairs (include reading these from a table).* F LE. 3 Observe using graphs and tables that a quantity increasing expenentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.*

Algebra I
Interpret expressions for functions in terms of the situation they model
F-LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.*
Statisties and Probability *
Summarize, represent, and interpret data on a single count or measurement variable
S-ID. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).*
S-ID. 2 Use statisties appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*
S-ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*

Summarize, represent, and interpret data on two categorical and quantitative variables
S-ID. 5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.*
S-ID. 6 Represent data on two quantitative variables on a seatter plot, and deseribe how the variables are related.*
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
b. Informally assess the fit of a function by plotting and analyzing residuals.
e. Fit a linear function for a seatter plot that suggests a linear association.

Interpret linear models
S-ID. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.*
S-ID. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.*
S-ID. 9 Distinguish between correlation and causation.*

Geometry Course

Geometry
Experiment with transformations in the plane
G-CO. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular are. G-CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., transtation versus horizontal stretch).
G-CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
G-CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
G-CO. 5 Given a geometric figure and a rotation, reflection, or transtation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions

G-CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
G-CO. 7 Use the definition of congrtuence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
G-CO.8 Explain how the criteria for triangle congrtuence (ASA, SAS, and SSS) follow from the definition
of congrtence in terms of rigid motions.

Prove geometric theorems

G-CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
G-CO. 10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180; base angles of isosceles triangles are congrtent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. G-CO. 11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congrtent diagonals.

Geometry Course

Make geometric constructions
G-CO. 12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
G-CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inseribed in a circle.

Understand similarity in terms of similarity transformations

G-SRT.1 Verify experimentally the properties of dilations given by a center and a seale factor:
a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
b. The dilation of a line segment is longer or shorter in the ratio given by the seale factor.

G-SRT. 2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. G-SRT. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Prove theorems involving similarity

G-SRT. 4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two propertionally, and conversely; the Pythagorean Theorem proved using triangle similarity. G-SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles
G-SRT. 6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
G-SRT. 7 Explain and use the relationship between the sine and cosine of complementary angles. G-SRT. 8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*

Understand and apply theorems about circles
G-C. 1 Prove that all circles are similar

G-C. 2 Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inseribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. G-C. 3 Construct the inseribed and circumseribed circles of a triangle, and prove properties of angles for a quadrilateral inseribed in a circle.

Find are lengths and areas of sectors of circles

G-C. 5 Derive using similarity the fact that the length of the are intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.

Translate between the geometric description and the equation for a conic section A
G-GPE. 1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

Use coordinates to prove simple geometric theorems algebraically
G-GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0,2)$. G-GPE. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometrie problems (e.g., find the equation of a line parallel or perpendieular to a given line that passes through a given point).
G-GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
G-GPE. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.*

Explain volume formulas and use them to solve problems
G-GMD. 1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
G-GMD. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*
Vistalize relationships between two dimensional and three dimensional objects
G-GMD. 4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

Apply geometric concepts in modeling situations

G-MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
G-MG. 2 Apply concepts of density based on area and volume in modeling sittations (e.g., persons per square mile, BTUs per cubic foot).*
G-MG. 3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*

Algebra

Number and Quantity
Extend the properties of exponents to rational exponents
N-RN. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $51 / 3$ to be the cube root of 5 because we want $[51 / 3] 3=5(1 / 3) 3$ to hold, so [51/3] 3 must equal 5 .
N-RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Reason quantitatively and use units to solve problems
N-Q. 2 Define appropriate quantities for the purpose of descriptive modeling.*

Perform arithmetic operations with complex numbers

N-CN. 1 Know there is a complex number i such that i $2=-1$, and every complex number has the form $\mathrm{a}=$ bi with a and b real.
N-CN. 2 Use the relation i 2 - 1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Use complex numbers in polynomial identities and equations
N-CN. 7 Solve quadratic equations with real coefficients that have complex solutions.

Algebra

Interpret the structure of expressions
A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see x4-y 4 as ($x 2$)
$z-\left(y_{2}\right) 2$, thus recognizing it as a difference of squares that can be factored as $\left(x_{2}-y_{2}\right)\left(x_{2}+y_{2}\right)$.

Write expressions in equivalent forms to solve problems

A SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* c. Use the properties of expenents to transform expressions for expenential functions. For example the expression 1.15 t can be rewritten as $[1.151 / 12] 12 \mathrm{t} \sim 1.01212 \mathrm{t}$ to reveal the approximate equivalent monthly interest rate if the anntal rate is 15%.

Algebra II

A SSE. 4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.*

Understand the relationship between zeros and factors of polynomials

A-APR. 2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by x a is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$. A APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to eonstruct a rough graph of the function defined by the polynomiat.

Use polynomial identities to solve problems
A APR.4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x_{2}+y 2\right) 2=(x 2-y 2) 2+(2 x y) 2$ can be used to generate Pythagorean triples.

Rewrite rational expressions

A-APR. 6 Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x) \neq$ $r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.

Create equations that describe numbers or relationships

A-CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*

Understand solving equations as a process of reasoning and explain the reasoning

A REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A-REI. 2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Solve equations and inequalities in one variable
A-REI. 4 Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for x 2 $=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.

Algebra II
Solve systems of equations
A REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
A REI. 7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=3 x$ and the eirele $x_{2}+y_{2}=3$.

Represent and solve equations and inequalities graphically

A REI. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=$ $g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*

Functions

Understand the concept of a function and use function notation
F IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacei sequence is defined recursively by $f(0)-f(1)-1, f(n+1)-f(n) \neq$ $f(n-1)$ for $n \geq 1$.

Interpret functions that arise in applications in terms of the context
F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* F-IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*

Analyze functions using different representations

F-IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
e. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
e. Graph exponential and logarithmic functions, showing intereepts and end behavior, and trigonometrie functions, showing period, midline, and amplitude.

Algebra 4
F-IF. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02) t, y=(0.97) t, y=(1.01) 12 t, y=(1.2) t / 10$, and elassify them as representing exponential growth and decay.
F IF.9-Compare properties of two functions each represented in a different way (algebraically, graphically, ntmerically in tables, or by verbal deseriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Build a function that models a relationship between two quantities
F-BF. 1 Write a function that describes a relationship between two quantities.*
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
F-BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*

Build new functions from existing functions

F-BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with eases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
FBF. 4 Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)-2 x 3$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$.

Construct and compare linear, quadratic, and exponential models and solve problems

F-LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).* F-LE.4 For exponential models, express as a logarithm the solution to abct $=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.*

Interpret expressions for functions in terms of the situation they model
F LE. 5 Interpret the parameters in a linear or expenential function in terms of a context.*

Algebra 4

Extend the domain of trigonometric functions using the unit circle
F TF. 1 Understand radian measure of an angle as the length of the are on the unit circle subtended by the angle.
F-TF. 2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit eircle.

Model periodic phenomena with trigonometric functions
F-TF. 5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*

Prove and apply trigonometric identities
F-TF. 8 Prove the Pythagorean identity $\sin (\Theta) 2+\cos (\Theta) 2=1$ and use it to find $\sin (\Theta), \cos (\Theta)$, or tan (Θ), given $\sin (\Theta), \cos (\Theta)$, or $\tan (\Theta)$ and the quadrant of the angle.

Geometry

Translate between the geometric deseription and the equation for a conic section G-GPE. 2 Derive the equation of a parabola given a focus and directrix.

Statisties and Probability
Summarize, represent, and interpret data on a single count or measurement variable
S-ID. 4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*

Summarize, represent, and interpret data on two eategorical and quantitative variables
S-ID. 6 Represent data on two quantitative variables on a seatter plot, and deseribe how the variables are related.*
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.

Algebra II

Understand and evaluate random processes underlying statistical experiments S-IC. 1 Understand statistics as a process for making inferences about population parameters based on a fandom sample from that population.*

S-IC. 2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?*

Make inferences and justify conclusions from sample striveys, experiments, and observational studies

S-IC. 3 Recognize the purposes of and differences among sample strveys, experiments, and observational studies; explain how randomization relates to each.*
S-IC. 4 Use data from a sample strvey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.*
S-IC. 5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.*
S-IC. 6 Evaluate reports based on data.*
Understand independence and conditional probability and use them to interpret data
S-CP. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or eategories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").*
S-CP. 2 Understand that two events Λ and B are independent if the probability of Λ and B-cecuring together is the product of their probabilities, and use this characterization to determine if they are independent.*
S-CP. 3 Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.* S-CP. 4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. De the same for other subjects and compare the results.*
S-CP. 5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.*

Use the rules of probability to compute probabilities of compound events in a uniform probability model
S-CP. 6 Find the conditional probability of Λ given B as the fraction of $B ' s$ outeomes that also belong to Λ, and interpret the answer in terms of the model.*
S-CP. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.*

Integrated Mathematics
Number and Quantity
Reason quantitatively and use units to solve problems
N-Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the seale and the origin in graphs and data displays.*
N-Q. 2 Define appropriate quantities for the purpose of descriptive modeling.*
N-Q. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*

Algebra

Interpret the structure of expressions
A SSE. 1 Interpret expressions that represent a quantity in terms of its context.*
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P.

Write expressions in equivalent forms to solve problems
A-SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*
e. Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15 t$ can be rewritten as $[1.151 / 12] 12 t \sim 1.01212 t$ to reveal the approximate equivalent monthly interest rate if the anntal rate is 15%.

Create equations that describe numbers or relationships

A CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.* A-CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*
A-CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.* A CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $\mathrm{V}=\mathrm{IR}$ to highlight resistance R .*

Integrated Mathematies I
Solve equations and inequalities in one variable
A-REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Solve systems of equations

A-REI. 5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
A-REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Represent and solve equations and inequalities graphically
A-REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
A REI. 11 Explain why the x coordinates of the points where the graphs of the equations $y=f(x)$ and $y=$ $g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e. g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
A REI. 12 Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half planes.

Functions

Understand the concept of a function and use function notation
F IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f correspending to the input x. The graph of f is the graph of the equation $y=f(x)$.
FIF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F-IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacei sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n) \neq$ $\mathrm{f}(\mathrm{n}-1)$ for $\mathrm{n} \geq 1$.

Interpret functions that arise in applications in terms of the context
F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the

relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*

Integrated Mathematics I
F IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
F IF. 6 Caleulate and interpret the average rate of change of a function (presented symbelically or as a table) over a specified interval. Estimate the rate of change from a graph.*

Analyze functions using different representations

F-IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

F-IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, ntmerically in tables, or by verbal deseriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Build a function that models a relationship between two quantities
FBF.1 Write a function that deseribes a relationship between two quantities.* a. Determine an explicit expression, a recursive process, or steps for calculation from a context. F-BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*

Construct and compare linear, quadratic, and exponential models and solve problems
F-LE. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions.*
a. Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input output pairs (include reading these from a table).* FLE. 3 Observe using graphs and tables that a quantity inereasing expenentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.*

Interpret expressions for functions in terms of the situation they model
F-LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.*
Integrated Mathematics I
Geometry
Experiment with transformations in the plane
G-CO. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular are. G-CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; deseribe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., transtation versus horizontal stretch).
G-CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and
reflections that carry it onto itself.
G-CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, cireles, perpendicular lines, parallel lines, and line segments. G-CO. 5 Given a geometric figure and a rotation, reflection, or transtation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions

G-CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
G-CO. 7 Use the definition of congrtuence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
G-CO.8 Explain how the criteria for triangle congrtuence (ASA, SAS, and SSS) follow from the definition of congrtence in terms of rigid motions.

Prove geometric theorems

G-CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congrtent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
G-CO. 10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180; base angles of isosceles triangles are congrtent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. G-CO. 11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Integrated Mathematies I
Statistics and Probability
Summarize, represent, and interpret data on a single count or measurement variable
S-ID. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).*
S-ID. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*
S-ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*

Summarize, represent, and interpret data on two categorical and quantitative variables
S-ID. 5 Summarize categorical data for two categories in two way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.*
S-ID. 6 Represent data on two quantitative variables on a seatter plot, and deseribe how the variables are related.*
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
e. Fit a linear function for a scatter plot that suggests a linear association.

Interpret linear models

S-ID. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.*
S ID. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.*
S-ID. 9 Distinguish between correlation and causation.*
Integrated Mathematies I
Number and Quantity
Extend the properties of exponents to rational exponents
N-RN. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $51 / 3$ to be the cube root of 5 because we want $[51 / 3] 3=5(1 / 3) 3$ to hold, so [51/3] 3 must equal 5.
N-RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Use properties of rational and irrational numbers

N-RN. 3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Reason quantitatively and use units to solve problems
N -Q. 2 Define appropriate quantities for the purpose of descriptive modeling.*

Perform arithmetic operations with complex numbers

N-CN. 1 Know there is a complex number i such that i $2=-1$, and every complex number has the form $a \neq$ bi with a and b real.
N-CN. 2 Use the relation $i 2=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Use complex numbers in polynomial identities and equations

N-CN. 7 Solve quadratic equations with real coefficients that have complex solutions.

Algebra

Interpret the structure of expressions
A-SSE. 1 Interpret expressions that represent a quantity in terms of its context.* b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r}) \mathrm{n}$ as the product of P and a factor not depending on P.

Integrated Mathematics I
A SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x 4$ y 4 as $\left(x_{2}\right)$
$2\left(y^{2}\right) 2$, thus recognizing it as a difference of squares that can be factored as $\left(x_{2} \quad y 2\right)(x 2+y 2)$.

Write expressions in equivalent forms to solve problems

A SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*
a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

Perform arithmetic operations on polynomials
A-APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Create equations that describe numbers or relationships
A-CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.* A-CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*
A CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $\mathrm{V}=\mathrm{IR}$ to highlight resistance R .*

Understand solving equations as a process of reasoning and explain the reasoning M

A-REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Solve equations and inequalities in one variable

A REI. 4 Solve quadratic equations in one variable.
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form ($x \quad$ p) $2-q$ that has the same solutions. Derive the quadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for $x 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm$ bi for real numbers a and b.

Solve systems of equations

A REI. 7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=3 x$ and the eirele $x_{2}+y_{2}-3$.

Functions

Interpret functions that arise in applications in terms of the context M
F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* F IF. 5 Relate the domain of a function to its graph and, where applieable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.* F IF. 6 Caleulate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*

Analyze functions using different representations

F-IF. 7 Graph functions expressed symbelically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F-IF. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02) t, y=(0.97) t, y=(1.01) 12 t, y=(1.2) t / 10$, and elassify them as representing exponential growth and decay.
F-IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Integrated Mathematics II

Build a function that models a relationship between two quantities
F-BF. 1 Write a function that describes a relationship between two quantities.*
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.

Build new functions from existing functions
F-BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Geometry
Understand similarity in terms of similarity transformations
G-SRT.1 Verify experimentally the properties of dilations given by a center and a seale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
b. The dilation of a line segment is longer or shorter in the ratio given by the seale factor.

G-SRT. 2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. G-SRT. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Prove theorems using similarity

G-SRT. 4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. G-SRT. 5 Use congrtence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles
G-SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. G-SRT. 7 Explain and use the relationship between the sine and cosine of complementary angles.

Integrated Mathematics II
G-SRT. 8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*

Explain volume formulas and use them to solve problems
G-GMD. 1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informat limit arguments.
G-GMD. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*
Statistics and Probability*
Summarize, represent, and interpret data on two categorical and quantitative variables
S-ID. 6 Represent data on two quantitative variables on a seatter plot, and describe how the variables are related.*
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
b. Informally assess the fit of a function by plotting and analyzing residuals.

Understand independence and conditional probability and use them to interpret data
S-CP. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").*
S-CP. 2 Understand that two events A and B are independent if the probability of A and B oceurring together is the product of their probabilities, and use this characterization to determine if they are independent.*
S-CP. 3 Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of Λ given B is the same as the probability of Λ, and the conditional probability of B given Λ is the same as the probability of B.* S-CP. 4 Construct and interpret two way frequency tables of data when two categories are associated with each object being classified. Use the two way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your sehool on their faverite subject among math, seience, and English. Estimate the probability that a

randomly selected student from your school will favor science given that the student is in tenth grade. De the same for other subjects and compare the results.*
S-CP. 5 Recognize and explain the concepts of conditional probability and independence in everyday tanguage and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

Integrated Mathematics H

Use the rules of probability to compute probabilities of compound events in a uniform probability model
S-CP. 6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.*
S-CP. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.*

Integrated Mathematies HI
Number and Quantity
Reason quantitatively and use units to solve problems
N-Q. 2 Define appropriate quantities for the purpose of descriptive modeling.*

Algebra

Interpret the structure of expressions
A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x 4-y 4$ as ($x 2$)
$z \quad\left(y^{2}\right) 2$, thus recognizing it as a difference of squares that can be factored as ($x 2$ y 2) ($x 2+y 2$).
Write expressions in equivalent forms to solve problems
A SSE. 4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.*

Understand the relationship between zeros and factors of polynomials
A-APR. 2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$. A-APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Use polynomial identities to solve problems
A APR. 4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x 2+y 2) 2-(x 2$ y 2$) 2+(2 x y) 2$ can be used to generate Pythagorean triples.

Rewrite rational expressions

A APR. 6 Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x) \neq$ $r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.

Integrated Mathematics II
 Create equations that describe numbers or relationships
 A CED. 1 Create equations and inequalities in one variable and use them to solve problems. Inelude equations arising from linear and quadratic functions, and simple rational and exponential functions.* A CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and seales.*
 Understand solving equations as a process of reasoning and explain the reasoning
 A REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
 A REI. 2 Solve simple rational and radical equations in one variable, and give example showing how extraneous solutions may arise.

Represent and solve equations and inequalities graphically
A-REI. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=$ $g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, expenential, and logarithmic functions.*

Interpret functions that arise in applications in terms of the context

F-IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* F-IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*

Analyze functions using different representations

FIF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* c. Graph polynomial functions, identifying zeros when stitable factorizations are available, and showing end behavior.e. Graph expenential and logarithmie functions, showing intereepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F-IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Build new functions from existing functions
F-BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
F-BF. 4 Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $f(x)-(x+1) /(x-1)$ for $x \neq 1$.

Construct and compare linear, quadratic, and exponential models and solve problems
F LE.4 For exponential models, express as a logarithm the solution to abet - d where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.*

Extend the domain of trigonometric functions using the unit circle
F-TF. 1 Understand radian measure of an angle as the length of the are on the unit circle subtended by the angle.
F-TF 2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit eirele.

Model periodic phenomena with trigonometric functions
F.TF. 5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*

Prove and apply trigonometric identities

F-TF. 8 Prove the Pythagorean identity $\sin (\Theta) 2+\cos (\Theta) 2=1$ and use it to find $\sin (\Theta), \cos (\Theta)$, or tan (Θ), given $\sin (\Theta), \cos (\Theta)$, or $\tan (\Theta)$ and the quadrant of the angle.
$\left\lvert\, \begin{aligned} & \text { MEPARTMENT OF } \\ & \text { DESIS }\end{aligned}\right.$
DEPARTMENT OF
EDUCATION
Ensuring a bright future for every child

G-CO. 12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, ete.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
G-CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Understand and apply theorems about circles

G-C. 1 Prove that all circles are similar.
G-C. 2 Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. G-C. 3 Construct the inseribed and cireumseribed circles of a triangle, and prove properties of angles for a quadrilateral inseribed in a circle.

Find are lengths and areas of sectors of cireles

G-C. 5 Derive using similarity the fact that the length of the are intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.

Translate between the geometric description and the equation for a conic section
G-GPE. 1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
G-GPE. 2 Derive the equation of a parabola given a focus and directrix.
Use coordinates to prove simple geometric theorems algebraically
G-GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0,2)$.
G-GPE. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometrie problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

Integrated Mathematics II

G-GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
G-GPE. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.*

Visualize relationships between two dimensional and three dimensional objects

G-GMD. 4 Identify the shapes of two-dimensional cross-sections of three dimensional objects, and identify three dimensional objects generated by rotations of two-dimensional objects.

Apply geometric concepts in modeling situations

G-MG. 1 Use geometric shapes, their meastres, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
G-MG. 2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
G-MG. 3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*

Summarize, represent, and interpret data on a single count or measurement variable S
S-ID. 4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use caleulators, spreadsheets, and tables to estimate areas under the normal eurve.*

Summarize, represent, and interpret dataon two eategorical and quantitative variables
S-ID. 6 Represent data on two quantitative variables on a seatter plot, and deseribe how the variables are related.*
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
b. Informally assess the fit of a function by plotting and analyzing residuals.

Understand and evaluate random processes underlying statistical experiments
S-IC. 1 Understand statisties as a process for making inferences about population parameters based on a random sample from that population.

Integrated Mathematics

S-IC. 2 Decide if a specified model is consistent with results from a given data generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?*

Make inferences and justify conclusions from sample surveys, experiments, and observational studies
S-IC. 3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.*
S-IC. 4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.*
S-IC. 5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.*
S-IC. 6 Evaluate reports based on data.*
Advanced Mathematics Plus
Number and Quantity
Perform arithmetic operations with complex numbers
N-CN. 3 Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.

Represent complex numbers and their operations on the complex plane

N-CN. 4 Represent complex numbers on the complex plane in rectangular and polar form (including reat and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.
N-CN. 5 Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(1+\sqrt{3} i) 3-8$ because $(1+\sqrt{3} i)$ has modulus 2 and argument 120°.
N-CN. 6 Caleulate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.

Use complex numbers in polynomial identities and equations
N-CN. 8 Extend polynomial identities to the complex numbers. For example, rewrite $x 2+4$ as $(x+2 i)(x-$ 2i).
N-CN. 9 Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials

Represent and model with vector quantities

N-VM. 1 Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., $\mathrm{v},|\mathrm{v}|, \mid \mathrm{v} \|, \mathrm{v}$).

N-VM. 2 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
N-VM. 3 Solve problems involving velocity and other quantities that can be represented by vectors.

Advanced Mathematies Plus

Perform operations on vectors
N VM. 4 Add and subtract vectors.
a. Add vectors end to-end, component wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.
b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum. e. Understand vector subtraction $v-W$ as $v+(-W)$, where $-W$ is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.
N-VM. 5 Multiply a vector by a sealar.
a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform sealar multiplication component wise, e.g., as e(vx, vy) - (evx, evy).
b. Compute the magnitude of a sealar multiple ev using $\|\mathrm{ev}\|=|\mathrm{c}|_{\mathrm{V}}$. Compute the direction of ev knowing that when $|\mathrm{c}| \mathrm{v} 0$, the direction of ev is either along $v($ for $\mathrm{c}>0$) or against v (for $\mathrm{c}<0$).

Perform operations on matrices and use matrices in applications

N-VM. 6 Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.
N-VM. 7 Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.
N-VM. 8 Add, subtract, and multiply matrices of appropriate dimensions.
N-VM. 9 Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.
N-VM. 10 Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.
N-VM. 11 Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.
N VM. 12 Work with 2×2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.

Algebra

Use polynomial identities to solve problems
A-APR. 5 Know and apply the Binomial Theorem for the expansion of $(x+y) n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.

Advanced Mathematics Plus

Rewrite rational expressions
A APR. 7 Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzere rational expression; add, subtract, multiply, and divide rational expressions.

Solve systems of equations

A-REI. 8 Represent a system of linear equations as a single matrix equation in a vector variable. A REI. 9 Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).

Functions

Analyze functions using different representations
F-IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

Build a function that models a relationship between two quantities

F-BF. 1 Write a function that describes a relationship between two quantities. *
e. Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the tocation of the weather balloon as a function of time.

Build new functions from existing functions

F-BF. 4 Find inverse functions.
b. Verify by composition that one function is the inverse of another.
e. Read values of an inverse function from a graph or a table, given that the function has an inverse. d. Produce an invertible function from a non-invertible function by restricting the domain. F-BF. 5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

Advanced Mathematies Plus

Extend the domain of trigonometric functions using the unit circle

F TF. 3 Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number.
F-TF. 4 Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.
Model periodic phenomena with trigonometric functions
F-TF. 6 Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.
F-TF. 7 Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context. *

Prove and apply trigonometric identities
F-TF.9 Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

Geometry

Apply trigonometry to general triangles
G-SRT. 9 Derive the formula $\Lambda=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
G-SRT. 10 Prove the Laws of Sines and Cosines and use them to solve problems.
G-SRT. 11 Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Understand and apply theorems about circles
G-C. 4 Construct a tangent line from a point outside a given circle to the circle.

Translate between the geometric description and the equation for a conic section

Advanced Mathematies Plus
G-GPE. 3 Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.

Explain volume formulas and use them to solve problems
G-GMD. 2 Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.

Statistics and Probability*

Use the rules of probability to compute probabilities of compound events in a uniform probability model
S-CP. 8 Apply the general Multiplication Rule in a uniform probability model, $P(\Lambda$ and $B)=P(\Lambda) P(B \mid \Lambda)=$ $P(B) P(A \mid B)$, and interpret the answer in terms of the model.*
S-CP. 9 Use permutations and combinations to compute probabilities of compound events and solve problems.*

Caleulate expected values and use them to solve problems

S-MD. 1 Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.*
S-MD. 2 Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.*
S-MD. 3 Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple choice test where each question has four choices, and find the expected grade under various grading sehemes.*
S-MD. 4 Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?*

Advanced Mathematics Plus
Use probability to evaluate outcomes of decisions
S-MD. 5 Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.*
a. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.
b. Evaluate and compare strategies on the basis of expected values. For example, compare a highdeductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a miner or a major accident.*
S-MD. 6 Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).* S-MD. 7 Analyze decisions and strategies using probability concepts (e.g., product testing, medieal testing, pulling a hockey goalie at the end of a game).*

Appendix E: International Society for Technology in Education Standards (ISTE)

ISTE									
	Course	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8
ISTE Standards									
T1		\checkmark							
T2		\checkmark							
T3		\checkmark							
T4		\checkmark							
T5		\checkmark							
T6		\checkmark							

T1 Creativity and Innovation
T2 Commmication and Collaboration
T3 Research and Information Flueney
T4 Critical Thinking, Problem Solving, and Decision Making
T5 Digital Citizenship
T6 Technology Operations and Concepts
T1 Creativity and Innovation
Students demenstrate creative thinking, construct knowledge, and develop innovative products and processes using technology. Students do the following: Apply existing knowledge to generate new ideas, products, or processes. Create original works as a means of personal or group expression. Use models and simulations to explore complex systems and isstes. Identify trends and forecast possibilities.

T2 Commenication and Collaboration
Students use digital media and environments to communicate and work collaboratively, including at a distance, to support individual learning and contribute to the learning of others. Students do the following:
Interact, collaborate, and publish with peers, experts, or others employing a variety of digital environments and media.
Communicate information and ideas effectively to multiple audiences using a variety of media and formats.
Develop cultural understanding and global awareness by engaging with learners of other enltures.
Contribute to project teams to produce original works or solve problems.

T3 Research and Information Flueney
Students apply digital tools to gather, evaluate, and use information. Students do the following:
Plan strategies to guide inquiry.
Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources and media.
Evaluate and select information sourees and digital tools based on the appropriateness to specific tasks.
Process data and report results.
T4 Critical Thinking, Problem Solving, and Decision Making
Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources. Students do the following:
Identify and define authentic problems and significant questions for investigation.
Plan and manage activities to develop a solution or complete a project.
Collect and analyze data to identify solutions and/or make informed decisions.
Use multiple processes and diverse perspectives to explore alternative solutions.
T5 Digital Citizenship
Students understand human, cultural, and societal issues related to technology and practice legal and ethieal behavior. Students do the following:
Advocate and practice safe, legal, and responsible use of information and technology.
Exhibit a positive attitude toward using technology that supports collaboration, learning, and productivity.
Demonstrate personal responsibility for lifelong learning.
Exhibit leadership for digital citizenship.
T6-Technology Operations and Concepts
Students demonstrate a sound understanding of teehnology concepts, systems, and operations. Students do the following:
Understand and use technology systems.
Select and use applications effectively and productively.
Troubleshoot systems and applications.
Transfer current knowledge to learning of new technologies.

2023 Entrepreneurship

Program CIP: 52.0701— Entrepreneurship/Entrepreneurial Studies
Direct inquiries to:

Instructional Design Specialist Research and Curriculum Unit
P.O. Drawer DX

Mississippi State, MS 39762
662.325.2510

Mississippi Department of Education P.O. Box 771

Jackson, MS 39205
601.359.3077

Published by:
Mississippi Department of Education
Jackson, MS 39205

Research and Curriculum Unit
Mississippi State University
Mississippi State, MS 39762

The Research and Curriculum Unit (RCU), located in Starkville, as part of Mississippi State University (MSU), was established to foster educational enhancements and innovations. In keeping with the land-grant mission of MSU, the RCU is dedicated to improving the quality of life for Mississippians. The RCU enhances intellectual and professional development of Mississippi students and educators while applying knowledge and educational research to the lives of the people of the state. The RCU works within the contexts of curriculum development and revision, research, assessment, professional development, and industrial training.

Table of Contents

Acknowledgments 3
Standards 4
Executive Summary 6
Course Outline 7
Unit 1: Entrepreneurs and Entrepreneurial Skills 9
Unit 2: Entrepreneurial Trends 10
Unit 3: Idea Generation and Validation 11
Unit 4: Finance and Accounting 12
Unit 5: Marketing and Economics 13
Unit 6: Management 14
Unit 7: Legal Concepts 15
Unit 8: Business Models, Lean Canvas, and Planning 16
Student Competency Profile 17
Appendix: National Standards for Business Education 19

Acknowledgments

The Entrepreneurship curriculum was presented to the Mississippi State Board of Education on February 16, 2023. The following persons were serving on the state board at the time:

Dr. Robert Taylor, state superintendent of education
Ms. Rosemary G. Aultman, chair
Mr. Glen East, vice chair
Dr. Karen Elam
Mrs. Mary Werner
Dr. Ronnie McGehee
Dr. Wendi Barrett
Mr. Matt Miller
Mr. Bill Jacobs
Ms. Micah Hill
Mr. Charlie Fruge'
The following Mississippi Department of Education (MDE) and RCU managers and specialists assisted in the development of the Entrepreneurship curriculum:

Wendy Clemons, the associate state superintendent of the MDE Office of Secondary, Professional Development, and Career Technical Education, supported the RCU and teachers throughout the development of the framework and supporting materials.
Betsey Smith, the director of the RCU, supported RCU staff and teachers throughout the development of this framework and supporting materials.
Courtney McCubbins, the curriculum manager of the RCU, supported RCU staff and teachers throughout the development of this framework and supporting materials. Angie Davis, a project manager with the RCU, researched and coauthored this framework. helpdesk@rcu.msstate.edu

Special thanks are extended to the educators who contributed teaching and assessment materials that are included in the framework and supporting materials:

Jessica Beaird, Starkville High School, Starkville
Shelia Cole-Johnson, Holmes County Central High School, Lexington
Tina Craft, Richland High School, Richland
Amy Dotson, Tishomingo County High School, Iuka
Dre` Helms, Florence High School, Florence
Arlene Monk, Forest High School, Forest
Adrain Lynch, Belmont High School, Belmont

Standards

Some standards and alignment crosswalks are referenced in the appendix. Depending on the curriculum, these crosswalks should identify alignment to some of the standards mentioned below, as well as possible related academic topics as required in the Subject Area Testing Program in Algebra I, Biology I, English II, and U.S. History from 1877, which could be integrated into the content of the units. Mississippi's CTE Entrepreneurship curriculum is aligned to the following standards:

National Standards for Business Education

The National Business Education Association (NBEA) has created standards to introduce students to the basics of personal finance, the decision-making techniques needed to be wise consumers, the economic principles of an increasingly global marketplace, and the processes by which businesses operate. In addition, these standards provide a solid educational foundation for students who successfully want to complete college programs in various business disciplines. NBEA Business Education Library (2020).
nbea.org

International Society for Technology in Education Standards (ISTE)

Reprinted with permission from ISTE Standards for Students (2016). All rights reserved.
Permission does not constitute an endorsement by ISTE.
iste.org

College- and Career-Readiness Standards

College- and career-readiness standards emphasize critical thinking, teamwork, and problemsolving skills. Students will learn the skills and abilities demanded by the workforce of today and the future. Mississippi adopted Mississippi College- and Career-Readiness Standards (MCCRS) to provide a consistent, clear understanding of what students are expected to learn and so teachers and parents know what they need to do to help them.
mdek12.org/oae/college-and-career-readiness-standards

Framework for 21st Century Learning

In defining 21st-century learning, the Partnership for 21st Century Skills has embraced key themes and skill areas that represent the essential knowledge for the 21st century: global awareness; financial, economic, business, and entrepreneurial literacy; civic literacy; health literacy; environmental literacy; learning and innovation skills; information, media, and technology skills; and life and career skills. battelleforkids.org/networks/p21/frameworks-resources

Preface

Secondary CTE programs in Mississippi face many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing applied learning activities to every student in the classroom. This accountability is measured through increased requirements for mastery and attainment of competency as documented through both formative and summative assessments. This document provides information, tools, and solutions that will aid students, teachers, and schools in creating and implementing applied, interactive, and innovative lessons. Through best practices, alignment with national standards and certifications, community partnerships, and a hands-on, studentcentered concept, educators will be able to truly engage students in meaningful and collaborative learning opportunities.

The courses in this document reflect the statutory requirements as found in Section 37-3-49, Mississippi Code of 1972, as amended (Section 37-3-46). In addition, this curriculum reflects guidelines imposed by federal and state mandates (Laws, 1988, Ch. 487, §14; Laws, 1991, Ch. 423, §1; Laws, 1992, Ch. 519, §4 eff. from and after July 1, 1992; Strengthening Career and Technical Education for the 21st Century Act, 2019 [Perkins V]; and Every Student Succeeds Act, 2015).

Executive Summary

Course Description

Entrepreneurship introduces students to elements that will help contribute to success in owning and operating a business. This course incorporates entrepreneurial skills and trends along with idea generation and validation. Students will gain knowledge in areas such as finance, accounting, marketing, economics, and management as they pertain to owning your own business. This course will examine legal concepts, business models, Lean Canvas, and business planning.

Applied Academic Credit

The latest academic credit information can be found at mdek12.org/ese/approved-course-for-the-secondary-schools.

Teacher Licensure

The latest teacher licensure information can be found at mdek12.org/oel/apply-for-an-educator-license.

Professional Learning

If you have specific questions about the content of any of training sessions provided, please contact the RCU at 662.325.2510.

Course Outline

One 1-Carnegie Unit Course

This curriculum consists of one 1-credit course.
Entrepreneurship-Course Code: 990003

Unit	Title	Hours
1	Entrepreneurs and Entrepreneurial Skills	20
2	Entrepreneurial Trends	10
3	Idea Generation and Validation	15
4	Finance and Accounting	20
5	Marketing and Economics	25
6	Management	15
7	Legal Concepts	10
8	Business Models, Lean Canvas, and Planning	25
Total		$\mathbf{1 4 0}$

Professional Organizations

Distributive Education Clubs of America (DECA)
http://www.deca.org/
Future Business Leaders of America (FBLA)
http://www.fbla-pbl.org/

Unit 1: Entrepreneurs and Entrepreneurial Skills

Competencies and Suggested Objectives

1. Examine the role entrepreneurs play in today's economy and recognize the unique personal characteristics and skills that successful entrepreneurs possess. ${ }^{\text {DOK2 }}$
a. Define entrepreneur and entrepreneurship.
b. Describe the differences between being an entrepreneur and an employee.
c. Identify the benefits and evaluate the risks of being an entrepreneur.
d. Analyze the trade-offs between the roles of an entrepreneur and an employee.
e. Differentiate between an entrepreneur and intrapreneur.
2. Identify the characteristics and skills of a successful entrepreneur. ${ }^{\text {DOK1 }}$
a. Compare and contrast one's personal characteristics and skills with an entrepreneur's.
b. Self-assess one's personal qualifications and readiness to become an entrepreneur.
3. Identify effective communication methods used in business. ${ }^{\text {DOK1 }}$
a. Select, evaluate, and demonstrate effective communication techniques for business.
b. Analyze the causes of communication failure and develop solutions to address said failures.
c. Utilize communication and organizational skills to develop a personal network.
4. Investigate ethical practices in business. ${ }^{\text {DOK3 }}$
a. Define ethics and identify common ethical issues entrepreneurs encounter.
b. Discuss examples of honest and dishonest business practices.
c. Demonstrate integrity in relationships, decision-making, and communication.
d. Analyze the effect of unethical behavior on a business.
e. Develop a code of ethics for a business venture.
f. Apply ethics to business decision-making.
5. Evaluate the importance of collaboration in entrepreneurship. ${ }^{\text {DOK3 }}$
a. Demonstrate the ability to work in a team.
b. Prepare for and effectively participate in business collaborations with diverse partners.
c. Collaborate to resolve ethical lapses or failures.

Unit 2: Entrepreneurial Trends

Competencies and Suggested Objectives

1. Recognize trends in society that can lead to entrepreneurial opportunities. ${ }^{\text {DOK1 }}$
a. Define social entrepreneurship.
b. Define environmental entrepreneurship.
c. Identify and discuss various groups and stakeholders impacted by business.
d. Identify potential solutions for social and environmental concerns.
e. Discuss the ethical dilemma between what is profitable and what is socially responsible.
f. Research business methods and develop product ideas that are socially and environmentally responsible.
g. Create, organize, and manage a venture to achieve social and environmental change.
2. Identify and capitalize on the importance of trends in entrepreneurship. ${ }^{\text {DOK2 }}$
a. Identify trends that create business opportunities.
b. Identify Political, Environmental, Societal, Technological, Legal, Economic (PESTLE) trends.
c. Identify threats to a business that result from changing trends.
d. Forecast future trends based on research and analysis of current trends.

Unit 3: Idea Generation and Validation

Competencies and Suggested Objectives

1. Investigate lean startup methods to generate, develop, and test ideas to identify market and business opportunities. ${ }^{\text {DOK3 }}$
a. Recognize opportunities resulting from other peoples' wants and perceived needs.
b. Generate solution ideas for products and/or services to meet consumers' needs.
c. Brainstorm ideas for a new product or service.
d. Identify and evaluate consumer pains and problems through a customer discovery process (e.g., surveys, secondary research, etc.).
e. Refine an existing product or service based on opportunity gaps in the marketplace.
2. Discuss the value proposition as it relates to lean startups. ${ }^{\text {DOK2 }}$
a. Describe the value proposition for a product or service solution.
3. Test and validate solution ideas as it relates to product development. ${ }^{\text {DOK4 }}$
a. Define prototyping.
b. Design a simplistic prototype (e.g., sketch, model, etc.).
c. Ask for feedback on a solution idea from a relevant stakeholder.
d. Define product life cycle.
e. Define customer validation.
f. Define minimum viable product (MVP) and describe its role and importance.
g. Analyze where the market stands in a product's life cycle.
h. Develop a feedback summary report based on validation efforts.

Unit 4: Finance and Accounting

Competencies and Suggested Objectives

1. Identify financial resources necessary for an entrepreneurial venture.
a. Explain the role of seed or startup money for an entrepreneurial venture.
b. Determine the resources needed to start a business venture (e.g., materials, labor, etc.).
c. Determine the costs of starting a business venture.
d. Identify projected operational expenses.
e. Project the total cash needed to start a business (e.g., startup costs, ongoing operational expenses, and cash reserves).
f. Project ongoing cash needs for a business venture.
2. Identify common sources from which entrepreneurs can obtain funding.
a. Discuss potential sources of funding (e.g., mortgage, short-term loan, long-term loan, grants, angel network, investor, credit line, crowdfunding, etc.)
b. Differentiate between debt and equity financing and explain the advantages and disadvantages of each.
c. Discuss the concept of bootstrapping.
d. Assess the role of government assistance in the growth and development of a small business.
e. Research alternative options to obtain financing.
3. Recognize that entrepreneurs must establish, maintain, and analyze appropriate records using financial concepts to make a business decision. DOK2
a. Identify the reasons for keeping accurate business records and financial statements (e.g., income statement, balance sheet, cash flow statement, etc.).
b. Identify and describe various financial statements and the data in each (e.g., income statement, balance sheet, cash flow statement, etc.).
c. Prepare basic financial statements (e.g., income statement, balance sheet, cash flow statement, etc.).
d. Compare actual income and expenses budgeted for a specific period.

Unit 5: Marketing and Economics

Competencies and Suggested Objectives

1. Develop a marketing strategy to introduce a product or service. ${ }^{\text {DOK3 }}$
a. Define the purpose of marketing in an entrepreneurial venture.
b. Define and give examples of market segmentation methods.
c. Identify and describe target markets.
d. Define and give examples of various market types.
e. Discuss the concept of market share.
f. Utilize primary and secondary data sources to define a target market.
2. Identify and describe the traditional elements of marketing, known as the 4 Ps (i.e., product, price, place, promotion). ${ }^{\text {DOK2 }}$
a. Identify the features and benefits of a product.
b. Discuss the importance of pricing with respect to cost and profit.
c. Explain the importance of location for a business (e.g., online, physical).
d. Describe the promotional mix and prepare appropriate promotional activities for a business.
3. Explain strategies for sustaining and growing the market. ${ }^{\text {DOK2 }}$
a. Define customer service.
b. Identify ways to respond to customer concerns and why it is important.
c. Define customer loyalty and discuss why it is critical to a business.
d. Develop a strategy for gaining/maintaining a competitive advantage.
e. Define design thinking and design an innovative solution using design thinking principles.
4. Apply economic concepts when making decisions for an entrepreneurial venture. ${ }^{\text {DOK3 }}$
a. Define goods and services.
b. Define opportunity costs and explain the importance when making decisions.
c. Explain factors of production.
d. Define scarcity of resources.
e. Explain the determinants of supply and demand and how they interact to determine price.
f. Differentiate between the different types of market structures and analyze the effects on market price.
g. Explain why demand is necessary to the success of an entrepreneurial venture.
5. Discuss what determines the cost of producing a good or service. ${ }^{\text {DOK2 }}$
a. Describe the difference between fixed costs and variable costs.
b. Describe the impact of variable costs on pricing.
c. Describe the interrelationship between cost and price.
d. Conduct a break-even analysis.
6. Compute the difference between total revenue and total expenses and determine if a business has a profit or loss. ${ }^{\text {DOK4 }}$
a. Establish a profit goal and evaluate strategies to reach profitability.
b. Calculate gross and net profit.
7. Explore considerations of the global economy as it relates to entrepreneurship.

Unit 6: Management

Competencies and Suggested Objectives

1. Develop a management plan for an entrepreneurial venture. ${ }^{\text {DOK3 }}$
a. Define short-term and long-term goals.
b. Develop strategies for achieving goals.
c. Define mission statement.
d. Create a mission statement for a business venture.
e. Define exit plan.
f. Analyze exit plan options.
2. Describe the importance of a diverse workforce. ${ }^{\text {DOK2 }}$
a. Discuss human cultural differences.
b. Compare and contrast business practices in different business cultures.
3. Explore human resource needs in an entrepreneurial venture. ${ }^{\text {DOK3 }}$
a. Identify characteristics of a good employee.
b. Explain the risks and benefits of having friends and family members work in your business.
c. Identify skills and traits needed in specific jobs and careers.
d. Discuss the typical employee compensation plan.
e. Identify situations where outsourcing staffing is beneficial (e.g., independent contractors, temporary staffing, etc.).
4. Evaluate risks experienced in managing a business. DOK3
a. Define business risk.
b. Describe the risks faced by entrepreneurs and entrepreneurial ventures.
c. Differentiate between types of risks (e.g., speculative vs. pure risk).
d. Select types of insurance needed for a business venture.
e. Describe an emergency plan.

Unit 7: Legal Concepts

Competencies and Suggested Objectives

1. Analyze how forms of business ownership, government regulations, and legal regulations affect entrepreneurial ventures. ${ }^{\text {DOK3 }}$
a. Identify and define the different types of business ownership.
b. Compare and contrast the advantages and disadvantages of the different types of business ownership.
c. Describe special types of business ownership (e.g., S Corporations, LLCs, cooperatives, etc.).
d. Define franchise and describe the advantages and disadvantages of ownership in this type of business.
e. Investigate procedures for forming a business entity.
f. Identify and evaluate the various types of laws and agencies that regulate businesses.
g. Discuss and analyze the impact of government regulations on businesses.
h. Identify licenses that a small business must obtain.
i. Identify ways of protecting ideas and inventions (e.g., patents, trademarks, copyright, etc.).

Unit 8: Business Models, Lean Canvas, and Planning

Competencies and Suggested Objectives

1. Develop a plan to launch and operate a business. ${ }^{\text {DOK4 }}$
a. Describe why businesses must plan.
b. Compare and contrast traditional and lean startup business plans.
c. Define and describe a business model.
d. Compare and contrast business models and business plans.
e. Research business planning resources and information.
f. Develop a business plan for an entrepreneurial venture.
g. Evaluate the effectiveness of a business model for a particular business.
h. Identify opportunities to pivot a business model.

Student Competency Profile

Student's Name:

\qquad

This record is intended to serve as a method of noting student achievement of the competencies in each unit. It can be duplicated for each student, and it can serve as a cumulative record of competencies achieved in the course.

In the blank before each competency, place the date on which the student mastered the competency.

Unit 1: Entrepreneurs and Entrepreneurial Skills

	1.	Examine the role entrepreneurs play in today's economy and recognize the unique personal characteristics and skills that successful entrepreneurs possess.
	2.	Identify the characteristics and skills of a successful entrepreneur.
	3.	Identify effective communication methods used in business.
	4.	Investigate ethical practices in business.
	5.	Evaluate the importance of collaboration in entrepreneurship.

Unit 2: Entrepreneurial Trends

	1.	Recognize trends in society that can lead to entrepreneurial opportunities.
	2.	Identify and capitalize on the importance of trends in entrepreneurship.

	1.	Investigate lean startup methods to generate, develop, and test ideas to identify market and business opportunities.
	2.	Discuss the value proposition as it relates to lean startups.
	3.	Test and validate solution ideas as it relates to product development.
Unit 4: Finance and Accounting		
	1.	Identify financial resources necessary for an entrepreneurial venture.
	2.	Identify common sources from which entrepreneurs can obtain funding.
	3.	Recognize that entrepreneurs must establish, maintain, and analyze appropriate records using financial concepts to make a business decision.
Unit 5: Marketing and Economics		

	6.	Compute the difference between total revenue and total expenses and determine if a business has a profit or loss.	
	7.	Explore considerations of the global economy as it relates to entrepreneurship.	
Unit 6: Management			
	1.	Develop a management plan for an entrepreneurial venture.	
	2.	Describe the importance of a diverse workforce.	
	3.	Explore human resource needs in an entrepreneurial venture.	
	4.	Evaluate risks experienced in managing a business.	
Unit 7: Legal Concepts			
	1.	Analyze how forms of business ownership, government regulations, and legal regulations affect entrepreneurial ventures.	
Unit 8: Business Models, Lean Canvas, and Planning			

Appendix: National Standards for Business Education

National Standards for Business Education Crosswalk for Entrepreneurship									
	Units	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Standards									
NBEA-E1 Entrepreneurs and Entrepreneurial Skills		X							
NBEA-E2 Entrepreneurial Trends			X						
NBEA-E3 Idea Generation and Validation (LEAN Startup)				X					X
NBEA-E4 Economics						X			
NBEA-E5 Marketing						X			
NBEA-E6 Finance				X					
NBEA-E7 Accounting				X					
NBEA-E8 Management								X	
NBEA-E9 Legal									X
NBEA-E10 Business Models and Planning						X			

Entrepreneurship

NBEA-E1 - Entrepreneurs and Entrepreneurial Skills

- Examine the role entrepreneurs play in today's economy and recognize the unique personal characteristics and skills that successful entrepreneurs possess.
NBEA-E2- Entrepreneurial Trends
- Recognize trends in society that can lead to entrepreneurial opportunities.

NBEA-E3 - Idea Generation and Validation (LEAN Startup)

- Use lean startup methods to generate, develop, and test ideas to identify market and business opportunities.

NBEA-E4 - Economics

- Apply economic concepts when making decisions for an entrepreneurial venture.

NBEA-E5 - Marketing

- Develop a marketing strategy to introduce a product or service.

NBEA-E6 - Finance

- Understand financial concepts and use the financial tools available to make sound business decisions.

NBEA-E7 - Accounting

- Recognize that entrepreneurs must establish, maintain, and analyze appropriate records to make business decisions.

NBEA-E8 -Management

- Develop a management plan for an entrepreneurial venture.

NBEA-E9 - Legal

- Analyze how forms of business ownership, government regulations, and legal regulations affect entrepreneurial ventures.

NBEA-E10 - Business Models and Planning

- Develop a plan to launch and operate a business.

NBEA-MG12 - Operations Management

- Apply operations management principles and procedures to the design of an operations plan.
NBEA-MG13 - Global Perspective
- Examine the issues of corporate culture and managing in the global environment.

[^0]: ${ }^{1} 21$ st century skills. (n.d.). Washington, DC: Partnership for 21 st Century Skills.

[^1]: G-CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal streteh).
 G-CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
 G-CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, cireles, perpendieular lines, parallel lines, and line segments.
 G-CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

 ## Understand congruence in terms of rigid motions

 G-CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congrtuent.
 G-C0. 7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congrtent.
 G-CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

 ## Prove geometric theorems

 G-CO. 9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
 G-CO. 10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. G-CO. 11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

 Statistices and Probability
 Investigate patterns of association in bivariate data
 8.SP. 1 Construct and interpret seatter plots for bivariate meastrement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
 8.SP.2 Know that straight lines are widely used to model relationships between two quantitative variables. For seatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
 8.SP. 3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
 8.SP. 4 Understand that patterns of association can also be seen in bivariate categorieal data by displaying frequencies and relative frequencies in a two way table. Construct and interpret a two way table stmmarizing data on two categorical variables collected from the same subjects. Use relative frequencies ealculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have ehores?

 Summarize, represent, and interpret data on a single count or measurement variable
 S-ID. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).*

