Inquiry Strand Biology

2010 MS Framework Biology - Inquiry	2018 MS CCRS for Science - all grades and courses
Competency 1. Apply inquiry-based and problem-solving processes and skills to scientific investigations.	All Inquiry skills will be taught in the appropriate performance objectives in the new standards. Students will
 1a. Conduct a scientific investigation demonstrating safe procedures and proper care of laboratory equipment. Safety rules and symbols Proper use and care of the compound light microscope, slides, chemicals, etc. Accuracy and precision in using graduated cylinders, balances, beakers, 1b. Formulate questions that can be answered through research and experimental design. 	use various Science and Engineering Practices (SEPs) to learn the content. All science skills should be included as needed.
1c. Apply the components of scientific processes and methods in classroom and laboratory investigations (e.g., hypotheses, experimental design, observations, data analyses, interpretations, theory development).	
1d. Construct and analyze graphs (e.g., plotting points, labeling x-and y-axis, creating appropriate titles and legends for circle, bar, and line graphs).	
1e. Analyze procedures, data, and conclusions to determine the scientific validity of research.	
1f. Recognize and analyze alternative explanations for experimental results and to make predictions based on observations and prior knowledge.	
1g. Communicate and defend a scientific argument in oral, written, and graphic form.	

2010 MS Framework Biology I	2018 MS CCRS for Biology
Physical Science Competency 2. Describe the	
biochemical basis of life and explain how energy	Standard statements are in bold font below.
flows within and between the living systems.	
2a. Explain and compare with the use of examples the	Covalent and ionic bonding addressed in Grade 7, Physical Science and Chemistry.
types of bond formation (e.g., covalent, ionic,	Hydrogen bonding addressed in Marine and Aquatic Science I.
hydrogen, etc.) between or among atoms.	
 Subatomic particles and arrangement in atoms 	
 Importance of ions in biological processes 	
2b. Develop a logical argument defending water as an	
essential component of living systems (e.g., unique	Importance of water in biological system included in Marine and Aquatic Science I.
bonding and properties including polarity, high	
specific heat, surface tension, hydrogen bonding,	
adhesion, cohesion, and expansion upon freezing).	
2c. Classify solutions as acidic, basic, or neutral and	
relate the significance of the pH scale to an	
organism's survival (e.g., consequences of having	
different concentrations of hydrogen and hydroxide	Acid and base solutions and pH scale addressed in Grade 7 and Chemistry.
ions).	
2d. Compare and contrast the structure, properties,	BIO.1B Students will analyze the structure and function of the macromolecules that make up cells.
and principle functions of carbohydrates, lipids,	BIO.1B.1 Develop and use models to compare and contrast the structure and function of
proteins, and nucleic acids in living organisms.	carbohydrates, lipids, proteins, and nucleic acids (DNA and RNA) in organisms.
 Basic chemical composition of each group 	BIO.1B.2 Design and conduct an experiment to determine how enzymes react given various
 Building components of each group (e.g., amino 	environmental conditions (i.e., pH, temperature, and concentration). Analyze, interpret, graph, and
acids, monosaccharides, nucleotides, etc.)	present data to explain how those changing conditions affect the enzyme activity and the rate of the
• Basic functions (e.g., energy, storage, cellular,	reactions that take place in biological organisms.
heredity) of each group	

2010 MS Framework Biology I	2018 MS CCRS for Biology
2e. Examine the life processes to conclude the role	See BIO.1B.2 above
enzymes play in regulating biochemical reactions.	
• Enzyme structure	
 Enzyme function, including enzyme-substrate 	
specificity and factors that affect enzyme function (pH	
and temperature)	
2f. Describe the role of adenosine triphosphate (ATP)	See BIO.2.1 below
in making energy available to cells.	
• ATP structure	
ATP function	
2g. Analyze and explain the biochemical process of	BIO.2 Students will explain that cells transform energy through the processes of photosynthesis
photosynthesis and cellular respiration and draw	and cellular respiration to drive cellular functions.
conclusions about the roles of the reactants and	BIO.2.1 Use models to demonstrate that ATP and ADP are cycled within a cell as a means to transfer
products in each.	energy.
 Photosynthesis and respiration (reactants and 	BIO.2.2 Develop models of the major reactants and products of photosynthesis to demonstrate the
products)	transformation of light energy into stored chemical energy in cells. Emphasize the chemical
• Light-dependent reactions and light independent	processes in which bonds are broken and energy is released, and new bonds are formed and energy
reactions in photosynthesis, including requirements	is stored.
and products of each	BIO.2.3 Develop models of the major reactants and products of cellular respiration (aerobic and
 Aerobic and anaerobic processes in cellular 	anaerobic) to demonstrate the transformation of the chemical energy stored in food to the available
respiration, including products of each and energy	energy of ATP. Emphasize the chemical processes in which bonds are broken and energy is released,
differences	and new bonds are formed and energy is stored.
	BIO.2.4 Conduct scientific investigations or computer simulations to compare aerobic and anaerobic
	cellular respiration in plants and animals, using real world examples.
	BIO.2.5 Enrichment: Investigate variables (e.g., nutrient availability, temperature) that affect
	anaerobic respiration and current real-world applications of fermentation.
	BIO.2.6 Enrichment: Use an engineering design process to manipulate factors involved in
	fermentation to optimize energy production.*

2010 MS Framework Biology I	2018 MS CCRS for Biology
Life Science Competency 3. Investigate and evaluate	
the interaction between living organisms and their	Standard statements are in bold font below.
environment.	
3a. Compare and contrast the characteristics of the	Specific biome characteristics moved to Environmental Science
world's major biomes (e.g., deserts, tundra, taiga,	
grassland, temperate forest, tropical rainforest).	
 Plant and animal species 	
 Climate (temperature and rainfall) 	
 Adaptations of organisms 	

2010 MS Framework Biology I	2018 MS CCRS for Biology
3b. Provide examples to justify the interdependence	BIO.5 Students will Investigate and evaluate the interdependence of living organisms and their
among environmental elements.	environment.
 Biotic and abiotic factors in an ecosystem (e.g., 	BIO.5.1 Illustrate levels of ecological hierarchy, including organism, population, community,
water, carbon, oxygen, mold, leaves)	ecosystem, biome, and biosphere.
• Energy flow in ecosystems (e.g., energy pyramids	BIO.5.2 Analyze models of the cycling of matter (e.g., carbon, nitrogen, phosphorus, and water)
and photosynthetic organisms to herbivores,	between abiotic and biotic factors in an ecosystem and evaluate the ability of these cycles to
carnivores, and decomposers)	maintain the health and sustainability of the ecosystem.
 Roles of beneficial bacteria 	BIO.5.3 Analyze and interpret quantitative data to construct an explanation for the effects of
• Interrelationships of organisms (e.g., cooperation,	greenhouse gases on the carbon dioxide cycle and global climate.
predation, parasitism, commensalism, symbiosis, and	BIO.5.4 Develop and use models to describe the flow of energy and amount of biomass through
mutualism)	food chains, food webs, and food pyramids.
	BIO.5.5 Evaluate symbiotic relationships (e.g., mutualism, parasitism, and commensalism) and other
	co-evolutionary (e.g., predator-prey, cooperation, competition, and mimicry) relationships within
	specific environments.
	BIO.5.6 Analyze and interpret population data, both density-dependent and density-independent, to
	define limiting factors. Use graphical representations (growth curves) to illustrate the carrying
	capacity within ecosystems.
	BIO.5.7 Investigate and evaluate factors involved in primary and secondary ecological succession
	using local, real world examples.
	BIO.5.8 Enrichment: Use an engineering design process to create a solution that addresses changing
	ecological conditions (e.g., climate change, invasive species, loss of biodiversity, human population
	growth, habitat destruction, biomagnification, or natural phenomena).*
	BIO.5.9 Enrichment: Use an engineering design process to investigate and model current
	technological uses of biomimicry to address solutions to real-world problems.*
3c. Examine and evaluate the significance of natural	See BIO.5.3, BIO.5.8 and BIO.5.9 above
events and human activities on major ecosystems	
(e.g., succession, population growth, technology, loss	
of genetic diversity, consumption of resources).	

2010 MS Framework Biology I	2018 MS CCRS for Biology
Life Science Competency 4. Analyze and explain the	
structures and function of the levels of biological	Standard statements are in bold font below.
organization.	
4a. Differentiate among plant and animal cells and	BIO.1A Students will demonstrate an understanding of the characteristics of life and biological
eukaryotic and prokaryotic cells.	organization.
•Functions of all major cell organelles and structures	BIO.1A.1 Develop criteria to differentiate between living and non-living things.
(e.g., nucleus, mitochondrion, rough ER, smooth ER,	BIO.1A.2 Describe the tenets of cell theory and the contributions of Schwann, Hooke, Schleiden, and
ribosomes, Golgi bodies, vesicles, lysosomes,	Virchow.
vacuoles, microtubules, microfilaments, chloroplast,	BIO.1A.3 Using specific examples, explain how cells can be organized into complex tissues, organs,
cytoskeleton, centrioles, nucleolus, chromosomes,	and organ systems in multicellular organisms.
nuclear membrane, cell wall, cell membrane [active	BIO.1A.4 Use evidence from current scientific literature to support whether a virus is living or non-
and passive transport], cytosol)	living.
 Components of mobility (e.g., cilia, flagella, 	BIO.1C Students will relate the diversity of organelles to a variety of specialized cellular functions.
pseudopodia)	BIO.1C.1 Develop and use models to explore how specialized structures within cells (e.g., nucleus,
	cytoskeleton, endoplasmic reticulum, ribosomes, Golgi apparatus, lysosomes, mitochondria,
	chloroplast, centrosomes, and vacuoles) interact to carry out the functions necessary for organism
	survival.
	BIO.1C.2 Investigate to compare and contrast prokaryotic cells and eukaryotic cells, and plant,
	animal, and fungal cells.
	BIO.1C.3 Contrast the structure of viruses with that of cells, and explain why viruses must use living
	cells to reproduce.
	BIO.1D Students will describe the structure of the cell membrane and analyze how the structure is
	related to its primary function of regulating transport in and out of cells to maintain homeostasis.
	BIO.1D.1 Plan and conduct investigations to prove that the cell membrane is a semi-permeable,
	allowing it to maintain homeostasis with its environment through active and passive transport
	processes.
	BIO.1D.2 Develop and use models to explain how the cell deals with imbalances of solute
	concentration across the cell membrane (i.e., hypertonic, hypotonic, and isotonic conditions,
	sodium/potassium pump).

2010 MS Framework Biology I	2018 MS CCRS for Biology
4b. Differentiate between types of cellular	BIO.1E Students will develop and use models to explain the role of the cell cycle during growth,
reproduction. (DOK 1)	development, and maintenance in multicellular organisms.
Main events in the cell cycle and cell mitosis	BIO.1E.1 Construct models to explain how the processes of cell division and cell differentiation
(including differences in plant and animal cell	produce and maintain complex multicellular organisms.
divisions	BIO.1E.2 Identify and describe the changes that occur in a cell during replication. Explore problems
• Binary fission (e.g., budding, vegetative propagation,	that might occur if the cell does not progress through the cycle correctly (cancer).
etc.) Significance of meiosis in sexual reproduction	BIO.1E.3 Relate the processes of cellular reproduction to asexual reproduction in simple organisms
 Significance of crossing over 	(i.e., budding, vegetative propagation, regeneration, binary fission). Explain why the DNA of the
	daughter cells is the same as the parent cell.
	BIO.1E.4 Enrichment: Use an engineering design process to investigate the role of stem cells in
	regeneration and asexual reproduction, then develop applications of stem cell research to solve
	human medical conditions.*
	BIO.3A Students will develop and use models to explain the role of meiosis in the production of
	haploid gametes required for sexual reproduction.
	BIO.3A.1 Model sex cell formation (meiosis) and combination (fertilization) to demonstrate the
	maintenance of chromosome number through each generation in sexually reproducing populations.
	Explain why the DNA of the daughter cells is different from the DNA of the parent cell.
	BIO.3A.2 Compare and contrast mitosis and meiosis in terms of reproduction.
	BIO.3A.3 Investigate chromosomal abnormalities (e.g., Down syndrome, Turner's syndrome, and
	Klinefelter syndrome) that might arise from errors in meiosis (nondisjunction) and how these
	abnormalities are identified (karyotypes).
4c. Describe and differentiate among the	See BIO.1.A.3 above
organizational levels of organisms	
(e.g., cells, tissues, organs, systems, types of tissues.)	
Ad Evalain and describe how plant structures	Mayod to Potany
(vascular and populacular) and collular functions are	woved to botany
related to the survival of plants (e.g. meyoment of	
materiale plant reproduction)	

2010 MS Framework Biology I	2018 MS CCRS for Biology
Life Science Competency 5. Demonstrate an understanding of the molecular basis of heredity.	Standard statements are in bold font below.
 5a. Analyze and explain the molecular basis of heredity and the inheritance of traits to successive generations by using the Central Dogma of Molecular Biology. Structures of DNA and RNA Processes of replication, transcription, and translation Messenger RNA codon charts 	 BIO.3C Students will construct an explanation based on evidence to describe how the structure and nucleotide base sequence of DNA determines the structure of proteins or RNA that carry out essential functions of life. BIO.3C.1 Develop and use models to explain the relationship between DNA, genes, and chromosomes in coding the instructions for the traits transferred from parent to offspring. BIO.3C.2 Evaluate the mechanisms of transcription and translation in protein synthesis. BIO.3C.3 Use models to predict how various changes in the nucleotide sequence (e.g., point mutations, deletions, and additions) will affect the resulting protein product and the subsequent inherited trait. BIO.3C.4 Research and identify how DNA technology benefits society. Engage in scientific argument from evidence over the ethical issues surrounding the use of DNA technology (e.g., cloning, transgenic organisms, stem cell research, and the Human Genome Project, gel electrophoresis). BIO.3C.5 Enrichment: Investigate current biotechnological applications in the study of the genome (e.g., transcriptome, proteome, individualized sequencing, and individualized gene therapy).
5b. Utilize Mendel's laws to evaluate the results of monohybrid Punnett squares involving complete dominance, incomplete dominance, codominance, sex linked, and multiple alleles (including outcome percentage of both genotypes and phenotypes.)	 BIO.3B Students will analyze and interpret data collected from probability calculations to explain the variation of expressed traits within a population. BIO.3B.1 Demonstrate Mendel's law of dominance and segregation using mathematics to predict phenotypic and genotypic ratios by constructing Punnett squares with both homozygous and heterozygous allele pairs. BIO.3B.2 Illustrate Mendel's law of independent assortment using Punnett squares and/or the product rule of probability to analyze monohybrid crosses. BIO.3B.3 Investigate traits that follow non-Mendelian inheritance patterns (e.g., incomplete dominance, codominance, multiple alleles in human blood types, and sex-linkage). BIO.3B.4 Analyze and interpret data (e.g., pedigrees, family, and population studies) regarding Mendelian and complex genetic traits (e.g., sickle-cell anemia, cystic fibrosis, muscular dystrophy, color-blindness, and hemophilia) to determine patterns of inheritance and disease risk.

2010 MS Framework Biology I	2018 MS CCRS for Biology
5c. Examine inheritance patterns using current	See BIO 3B.4 above for pedigrees; See BIO.3A.3 above for karyotypes; See BIO.3C.4 and BIO.3C.5 for
technology (e.g., pedigrees, karyotypes, gel	DNA technology
5d. Discuss the characteristics and implications of	See BIO.3A.3 above for chromosomal mutations; See BIO.3C.3 for gene mutations; See BIO.3B.4 for
both chromosomal and gene mutations.	disease inheritance patterns
 Significance of nondisjunction, deletion, 	
substitutions, translocation, and frame shift mutation	
in animals	
 Occurrence and significance of genetic disorders 	
such as sickle cell anemia, Tay-Sachs disorder, cystic	
fibrosis, hemophilia, Downs Syndrome, color	
blindness	

2010 MS Framework Biology I	2018 MS CCRS for Biology
Life Science Competency 6. Demonstrate an	
understanding of principles that explain the diversity	Standard statements are in bold font below.
of life and biological evolution.	
6a. Draw conclusions about how organisms are	Major kingdom characteristics moved to Grade 6; plant kingdom studies moved to Botany;
classified into a hierarchy of groups and subgroups	Invertebrate and Vertebrate animals studied in Zoology
based on similarities that reflect their evolutionary	
relationships. (DOK 2)	
 Characteristics of the six kingdoms 	
• Major levels in the hierarchy of taxa (e.g., kingdom,	
phylum/division, class, order, family, genus, and	
species)	
• Body plans (symmetry)	
• Methods of sexual reproduction (e.g., conjugation,	
fertilization, pollination)	
 Methods of asexual reproduction (e.g., budding, 	
binary fission, regeneration, spore formation)	
6b. Critique data (e.g., comparative anatomy,	See BIO.4.2 below
Biogeography, molecular biology, fossil record, etc.)	
used by scientists (e.g., Redi, Needham, Spallanzani,	
Pasteur) to develop an understanding of evolutionary	
processes and patterns.	
6c. Research and summarize the contributions of	Moved to Foundations of Biology
scientists, (including Darwin, Malthus, Wallace,	
Lamarck, and Lyell) whose work led to the	
development of the theory of evolution.	

2010 MS Framework Biology I	2018 MS CCRS for Biology
6d. Analyze and explain the roles of natural selection,	BIO.4 Students will analyze and interpret evidence to explain the unity and diversity of life.
including the mechanisms of speciation (e.g.,	BIO.4.1 Use models to differentiate between organic and chemical evolution, illustrating the steps
mutations, adaptations, geographic isolation) and	leading to aerobic heterotrophs and photosynthetic autotrophs.
applications of speciation (e.g., pesticide and	BIO.4.2 Evaluate empirical evidence of common ancestry and biological evolution, including
antibiotic resistance).	comparative anatomy (e.g., homologous structures and embryological similarities), fossil record,
	molecular/biochemical similarities (e.g., gene and protein homology), and biogeographic
	distribution.
	BIO.4.3 Construct cladograms/phylogenetic trees to illustrate relatedness between species.
	BIO.4.4 Design models and use simulations to investigate the interaction between changing
	environments and genetic variation in natural selection leading to adaptations in populations and
	differential success of populations.
	BIO.4.5 Use Darwin's Theory to explain how genetic variation, competition, overproduction, and
	unequal reproductive success acts as driving forces of natural selection and evolution.
	BIO.4.6 Construct explanations for the mechanisms of speciation (e.g., geographic and reproductive
	isolation).
	BIO.4.7 Enrichment: Construct explanations for how various disease agents (bacteria, viruses,
	chemicals) can influence natural selection.
Co. Differentiate among chemical evolution errorie	See PIO 4.1 above
be. Differentiate among chemical evolution, organic	See BIO.4.1 above
evolution, and the evolutionary steps along the way	
to aerobic neterotrophs and photosynthetic	
autotrophs.	